
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited

SCHEDULING AND PROTOTYPING OF
DISTRIBUTED REAL-TIME SYSTEMS

(AN APPROACH USING JINI/JAVASPACES)

by

Tolga DEMIRTAS

March 2002

 Thesis Advisor: Man-Tak Shing
 Second Reader: Joseph Puett

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Scheduling and Prototyping of Distributed Real Time
 Systems (An approach using Jini/JavaSpaces)
6. AUTHOR(S) Tolga Demirtas

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The major difference between single processor and distributed processors scheduling is that, in addition to deciding which
order to execute tasks, distributed processors’ scheduling algorithms must also decide which processor the task should run on.
Moreover, these algorithms must also take into consideration practical network issues like transmission delay, loss of
messages, and synchronization in the absence of a global clock. This thesis proposes a formal model to capture these network
constraints and develops a proxy -based network buffer technique to support the inter-process communication for the user-
defined distributed real-time systems prototypes generated by the Distributed Computer Aided Prototyping System (DCAPS).
The proxy -based technique builds on the Jini/JavaSpaces infrastructure. We have conducted several experiments to measure the
response time of inter-process communication via JavaSpaces. We have demonstrated the effectiveness of the proxy -based
technique by creating an executable prototype of a user-defined distributed real-time system specification.

15. NUMBER OF
PAGES

241

14. SUBJECT TERMS
Computer Aided Prototyping, Distributed Real-Time Systems, Jini, JavaSpaces, Scheduling,
Prototyping.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

SCHEDULING AND PROTOTYPING OF
DISTRIBUTED REAL TIME SYSTEMS

(AN APPROACH USING JINI/JAVASPACES)

Tolga Demirtas
Lieutenant Junior Grade, Turkish Navy

B.S., Turkish Naval Academy, 1996

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2002

Author: Tolga Demirtas

Approved by: Man-Tak Shing, Thesis Advisor

Joseph Puett, Second Reader

C. S. Eagle, Chairman

 Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Scheduling is one of the basic issues in building real-time applications on a

distributed computing system. A distributed computing system is typically modeled as a

collection of processes interconnected by a communication network. For real-time

applications, scheduling is needed to meet applications timing constraints.

 The major difference between single processor and distributed processors

scheduling is that, in addition to deciding which order to execute tasks, distributed

processors’ scheduling algorithms must also decide which processors the task should run

on. Moreover, these algorithms must also take into consideration practical network issues

like transmission delay, loss of messages, and synchronization in the absence of a global

clock. This thesis proposes a formal model to capture these network constraints and

develops a proxy-based network buffer technique to support the inter-process

communication for the user-defined distributed real-time systems prototypes generated

by the Distributed Computer Aided Prototyping System (DCAPS). The proxy-based

technique builds on the Jini/JavaSpaces infrastructure. We have conducted several

experiments to measure the response time of inter-process communication via

JavaSpaces. We have demonstrated the effectiveness of the proxy-based technique by

creating an executable prototype of a user-defined distributed real-time system

specification.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. DISTRIBUTED SYSTEMS ..1
B. REAL-TIME SYSTEMS...3
C. RAPID PROTOTYPING AND CAPS ...4
D. SUMMARY..8

II. ISSUES RELATED TO DISTRIBUTED SYSTEMS ..9
A. BENEFITS OF DISTRIBUTED SYSTEMS...9

1. Performance ...9
2. Scalability..10
3. Resource Sharing ...10
4. Fault Tolerance and Availability ..10
5. Elegance ..10

B. CHALLENGES OF DISTRIBUTED SYSTEMS.......................................11
1. Latency ..11
2. Synchronization..11
3. Partial Failure ..12

C. THE SEVEN FALLACIES OF DISTRIBUTED COMPUTING12
D. MODELLING DISTRIBUTED SYSTEMS..13

1. Client/Server Model...15
a. Sockets...16
b. Remote Procedure Call (RPC)..16
c. Message Oriented Middleware (MOM)..................................16

2. Distributed Object Model..17
3. Tuple Space Model...17

E. SUMMARY..18

III. JINI AND JAVASPACES TECHNOLOGIES ...19
A. JINI..19

1. Simplicity ..20
2. Reliability ..20
3. Scalability..21
4. Device Genericity ...22

B. JAVASPACES..22
1. Key Features...24

a. Shareness...24
b. Persistentness ..24
c. Associativeness..25
d. Transactional Secureness ...26
e. Exchange of Executable Content ...26

2. Advantages of JavaSpaces Technologies ...26
a. Simplicity...26

 viii

b. Expressiveness...27
c. Loosely Coupled Protocols..27
d. Code Design...27

3. JavaSpaces Programming Model ...27
a. write() method..28
b. read() and readIfExists() Methods ...28
c. take() and takeIfExists() Methods ..30
d. notify() Method..31
e. snapshot() Method...32

C. SUMMARY..33

IV. ISSUES RELATED TO PSDL MODEL ...35
A. REAL-TIME CONSTRUCTS OF PSDL ..35
B. IMPLEMENTATION OF DATAFLOW AND SAMPLED STREAMS

USING JAVASPACES ..39
1. Dataflow Streams ...41
2. Sampled Streams ..42
3. State Streams ..43
4. Results ...43

V. IMPLEMENTATION ...47
A. PSDL SPECIFICATION OF THE DISTRIBUTED REAL-TIME

SYSTEM ...47
B. NETWORK PARTITION...48
C. JAVASPACES INTERFACE ...54
D. PROGRAM STRUCTURE...54
E. MASTER APPLICATION ...58
F. RESULTS ...59

VI. EXPERIMENTS AND RESULTS ...61
A. TEST PROGRAM ...62
B. EXPERIMENTS ..64

1. Experiment 1 ..64
2. Experiment 2 ..66
3. Experiment 3 ..68
4. Experiment 4 ..69
5. Experiment 5 ..71
6. Experiment 6 ..73
7. Experiment 7 ..74
8. Experiment 8 ..77
9. Experiment 9 ..80
10. Experiment 10 ..84
11. Experiment 11 ..87
12. Experiment 12 ..88
13. Experiment 13 ..92

C. RESULTS ...96

VII. CONCLUSION AND FUTURE WORKS ...101

 ix

A. SUMMARY..101
B. FUTURE WORK ...102
C. CONCLUDING REMARKS ..103

APPENDIX A. JAVASPACES API..105

APPENDIX B. IMPLEMENTATION CODE...107
A. COMPUTATION UNIT ONE..107
B. COMPUTATION UNIT TWO...121

APPENDIX C. MASTER APPLICATION ...131

APPENDIX D. JAVASPACES DISCOVERY CLASS...137

APPENDIX E. NETWORK BUFFERS...141
A. SAMPLED STREAM NETWORK BUFFERS ..141

1. String Type ...141
2. Boolean Type ..147
3. Integer Type ..153
4. Double Type ..159
5. Float Type ...165
6. Long Type ...171
7. HashMap Type ...177

B. DATAFLOW NETWORK BUFFERS ..183
1. String Type ...183
2. Boolean Type ..188
3. Integer Type ..193
4. Double Type ..198
5. Long Type ...203
6. Float Type ...208
7. HashMap Type ...213

LIST OF REFERENCES ..219

INITIAL DISTRIBUTION LIST...223

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1.1 A Distributed System with Autonomous Processing Elements (APE)..............2
Figure 1.2 Real-Time Systems ..4
Figure 1.3 DCAPS Rapid Prototyping Environment ..6
Figure 1.4 Evolutionary Prototyping Process..7
Figure 2.1 A PSDL Graph...15
Figure 4.1 A Hyperedge ..36
Figure 4.2 Expansion of hyperedge in Figure 4.1 ...37
Figure 4.3 Partition of PSDL Graph over two Processors ..38
Figure 4.4 Network Buffer ..45
Figure 5.1 PSDL Architecture Description of Temperature Control System...................48
Figure 5.2 A Possible Partition of the TCS...49
Figure 5.3 Timing Analysis of TCS ..51
Figure 5.4a Application Screen Shot while waiting for Start Notification.........................53
Figure 5.4b Application Screen Shot while Running..53
Figure 5.5 Class Diagram of Application Part 1 ...55
Figure 5.6 Master Application Screen Shot ..59
Figure 6.1a Test Program Main Window..62
Figure 6.1b A Client created by Test Program..62
Figure 6.1c A Pop-up Dialog used by Test Program..63
Figure 6.2 Response Time Diagram of Experiment 1 ...65
Figure 6.3a Response Time Diagram of first Client in Experiment 266
Figure 6.3b Response Time Diagram of second Client in Experiment 267
Figure 6.4 Response Time Diagram of Experiment 3 ...68
Figure 6.5a Response Time Diagram of first Client in Experiment 470
Figure 6.5b Response Time Diagram of second Client in Experiment 471
Figure 6.6 Response Time Diagram of Experiment 5 ...72
Figure 6.7 Response Time Diagram of Experiment 6 ...74
Figure 6.8a Response Time Diagram of Client on the Norma in Experiment 775
Figure 6.8b Response Time Diagram of Client on the Saturn in Experiment 7..................76
Figure 6.9a Response Time Diagram of Client on the Norma in Experiment 878
Figure 6.9b Response Time Diagram of Client on the Saturn in Experiment 8..................79
Figure 6.9c Response Time Diagram of Client on the Moon in Experiment 880
Figure 6.10a Response Time Diagram of Client on the Norma in Experiment 981
Figure 6.10b Response Time Diagram of Client on the Saturn in Experiment 9..................82
Figure 6.10c Response Time Diagram of Client on the Moon in Experiment 983
Figure 6.11a Response Time Diagram of Client on the Turtle1 in Experiment 1085
Figure 6.11b Response Time Diagram of Client on the Sun58 in Experiment 1086
Figure 6.12a Response Time Diagram of Client on the Turtle1 in Experiment 1187
Figure 6.12b Response Time Diagram of Client on the Sun58 in Experiment 1188
Figure 6.13a Response Time Diagram of first Client on the Turtle1 in Experiment 1289
Figure 6.13b Response Time Diagram of second Client on the Turtle1 in Experiment 12 ..90

 xii

Figure 6.13c Response Time Diagram of first Client on the Sun58 in Experiment 1291
Figure 6.13d Response Time Diagram of second Client on the Sun58 in Experiment 12....92
Figure 6.14a Response Time Diagram of first Client on the Turtle1 in Experiment 1393
Figure 6.14b Response Time Diagram of second Client on the Turtle1 in Experiment 13 ..94
Figure 6.14c Response Time Diagram of first Client on the Sun58 in Experiment 1395
Figure 6.14d Response Time Diagram of second Client on the Sun58 in Experiment 13....96

 xiii

LIST OF TABLES

Table 5.1 Properties of TCS Streams ...52
Table 6.1 Systems used in Experiments...61
Table 6.2 Data Statistics of Experiments ...97

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to thank to my second reader, LTC Joseph Puett, for all his help and

advice.

I would like to express my gratitude to my thesis advisor, Professor Shing, for all

his support, guidance, and confidence. He always made himself available whenever I

have needed his help. I appreciate his extraordinary knowledge of this field. It was

fortunate for me to work with him.

I would also like to thank my mother, Sevim, for her devotion, love, and support

throughout my life. I owe her everything. She was always with me even though I have

been thousands of miles away from home.

Finally, I would like to thank God for helping me to advance one more step in my

life and my career.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

This thesis deals with the area of computer-aided distributed real-time systems

development and investigates the technology for generating distributed real-time systems

from formal specifications for a given target platform. In this thesis, we primarily focus

on the inter-process communication in the distributed real-time systems for

heterogeneous networks. This thesis also provides an implementation of a distributed

real-time system to generate code for the prototype to run on the target platform defined

by the hardware model.

We investigate a new technology, Jini/JavaSpaces, to use for inter-process

communication in development of distributed real-time systems using the Distributed

Computer Aided Prototyping System (DCAPS). This chapter presents the basic concepts

of distributed real-time systems and DCAPS. Issues related to distributed systems are

discussed in Chapter II. Chapter III explains the Jini/JavaSpaces technology in depth and

explores the characteristics and advantages of using this technology in the development

of distributed real-time systems. Chapter IV discusses the main principles of the

Prototyping System Description Language (PSDL) used in DCAPS, and explains how we

can use the Jini/JavaSpaces technology to support these principles for inter-process

communication. Chapter V presents an example implementation based on the solutions

we developed. The experiments conducted to measure the response time of

Jini/JavaSpaces services for inter-process communication are explained in detail in

Chapter VI. We conclude the work done in Chapter VII.

This thesis does not provide detailed information about DCAPS and PSDL. We

assume that the reader has a strong background in DCAPS and PSDL.

A. DISTRIBUTED SYSTEMS

In the past few years, the computing landscape has changed dramatically. Many

devises, such as hand-phones, Personal Device Assistants (PDAs), and Internet

Terminals, etc., have been enhanced with network capabilities to leverage the benefits

 2

that new communication technologies have brought. Industrial companies and military

services often operate or communicate via the Internet in a broad area to streamline

operations and cut expenditures. Devices and software components have become more

tightly coupled, cooperating together in a distributed system to accomplish common

goals.

We can define a distributed computing system as a system of multiple

autonomous processing elements, cooperating for a common purpose or to achieve a

common goal. Figure 1.1 shows a distributed system. “Distributed Computing” is all

about designing and building applications as a set of processes that are distributed across

a network of machines and work together as an ensemble to solve a common problem

[FHA99].

Figure 1.1 A Distributed System with Autonomous Processing Elements (APE)

If a distributed system consists of a collection of autonomous processing

elements, then it is considered to be a “loosely-coupled” system. If a distributed system

consists of multiple processing units, sharing a single memory and address space, then it

is considered to be a “tightly-coupled” system [CAA98]. We focus on the architecture

APE

APE

APE

APE

Network

 3

and design of “loosely-coupled” distributed systems in this thesis. Because of this, we

will use the term “distributed systems” to mean loosely-coupled distributed systems.

B. REAL-TIME SYSTEMS

Systems that must correspond with each other as fast as possible are sometimes

informally called “real-time systems”. This objective is rarely defined precisely, and is

often interpreted as minimizing response time with respect to some performance measure,

such as the average delay [LUQ93].

Another definition of real-time systems is provided by [LAP93]: “A real-time

system is a system that must satisfy explicit (bounded) response time constrains or risk

severe consequences, including failure.”

A real-time system is one that has performance deadlines on its computations and

actions. Real-time systems are often embedded, meaning that the computational system

exists inside a larger system, with the purpose of helping that system to achieve its

overall responsibilities. Performance requirements are most commonly specified in terms

of deadlines. A deadline is either a point in time (time-driven) or a delta-time interval

(event-driven) by which a system action must occur [DOU01].

We can separate real- time systems into three major groups according to their

timing constraints as shown in Figure 1.2. A real-time system, which is well defined and

has responses that occur within the specified deadlines for all tasks, is called a “hard”

real-time system. Timeliness is essential to correctness in hard real- time systems. A

missed deadline constitutes an erroneous computation and a system failure. In hard real-

time systems, late data is at best worthless data and at worst, bad data. A real-time

system, which may be constrained simply by average execution time or by more complex

constraints, is called a “soft” real- time system. Missing some deadlines, by some amount,

under some circumstances, is acceptable for soft real-time systems. In soft real-time

systems, late data may still be good data. Some systems have both soft and hard deadline

performance constraints. These types of real-time systems are called “firm” real-time

systems. These so-called firm deadlines arise when individual deadlines may be missed,

 4

as long as two things occur. First, a sufficient average performance maintained at all

times. Second, each deadline must be met no later than a certain time. A schedulable

system is one that can be guaranteed to meet all its performance requirements [DOU01].

Figure 1.2 Real-Time Systems

One of the major differences between a hard real-time system and a conventional

system is that the application software must meet its deadlines even under worst-case

conditions. Large scale, parallel and distributed, hard real-time systems are important to

both civilian and military applications. Examples of hard real-time systems include air

traffic control systems, controls for automated factories, telecommunication systems,

space shuttle avionics systems, and C3I systems. Hard real-time software systems are

often embedded in larger systems, performing critical functions [LAS96].

C. RAPID PROTOTYPING AND CAPS

Over the past years, the demand for hard real- time and embedded systems has

increased. These kinds of systems generally have strict requirements on their accuracy,

safety and reliability. Feasible requirements for these kinds of systems are difficult to

formulate, understand and meet without extensive prototyping. Computer aid is the key to

rapid construction, evaluation and evolution of such prototypes [LUQ93].

The Distributed Computer Aided Prototyping System (DCAPS) is an integrated

software development environment which has been developed at the Naval Postgraduate

School for rapid prototyping of hard real-time embedded software systems, such as

Real-Time Systems

Hard Real-Time Systems

Firm Real-Time Systems

Soft Real-Time Systems

 5

missile guidance systems, space shuttle avionics systems, software controllers for a

variety of consumer appliances and military Command, Control, Communication and

Intelligence (C3I) systems [LUQ92]. DCAPS supports rapid prototyping and automatic

generation of source code based on designer specifications in an evolutionary software

development process [LBS00].

Rapid prototyping can be used to reduce the risk of producing systems that do not

meet the customer needs [LUQ93]. Rapidly constructed prototypes are used to help both

the developers and their customers visualize the proposed system and assess its properties

in an iterative process.

The heart of DCAPS is the Prototyping System Description Language (PSDL).

PSDL serves as an executable prototyping language at the architecture level and has

special features for real-time system design. PSDL is a language for describing

prototypes of real-time software systems. It is most useful for requirements analysis,

feasibility studies, and the design of large embedded systems. PSDL has facilities for

recording and enforcing timing constraints, and for modeling the control aspects of real-

time systems using nonprocedural control constraints, operator abstractions, and data

abstractions. PSDL has been designed for use with an associated prototyping

methodology. PSDL prototypes are executable if supported by a software base containing

reusable software components in an underlying programming language [LBY88].

Building on the success of the earlier versions of DCAPS, the DCAPS uses PSDL

for specification of distributed systems and automates the generation of interface codes

with the objective of making the network transparent from the developer’s point of view

[LBS01]. DCAPS also targets the heterogeneous distributed system development.

DCAPS supports an iterative prototyping process characterized by exploratory

design and extensive prototype evolution [LAS96]. Figure 1.3 shows the DCAPS Rapid

Prototyping Environment.

 6

Figure 1.3 DCAPS Rapid Prototyping Environment

An automated prototyping methodology helps software engineers and end-users

to validate functional requirements. It also helps them to verify design decisions and

specifications early in the development phase using rapid prototyping.

There are four major stages in the DCAPS rapid prototyping process: software

system design, construction, execution, and requirements evaluation/modification. Figure

1.4 shows the evolutionary prototyping process.

DCAPS
USER

INTERFACE
Pr

oj
ec

t C
on

tr
ol

E

xecution Support

In
te

rf
ac

e
E
d
i
t
o
r

T
ar

ge
tL

an
g

E
di

to
r

PS
D

L

E
di

to
r

Editors

ECS

Merger

Software Base

Tranlator

Scheduler

Compiler

 7

Figure 1.4 Evolutionary Prototyping Process

The initial prototype design starts with an analysis of the problem and a decision

about which parts of the proposed system are to be prototyped. Requirements for the

prototype are then generated, either informally (e.g., natural language) or in some formal

notation.

After requirements analysis, the designer uses the DCAPS PSDL editor to draw

dataflow diagrams annotated with nonprocedural control constraints as part of the

specification of a hierarchically structured prototype, resulting in a preliminary top level

design, free from programming level details. The designer may continue to decompose

any software module until its components can be realized via reusable components drawn

from the software base or realized with new atomic components. This prototype is then

translated into the target programming language for execution and evaluation. Debugging

and modification utilize a design database that assists the designers in managing the

design history and coordinating change, as well as other tools shown in Figure 1.3

[LBM00].

user input

Requirements
/

Constraints

Construct
Model

Static
Analysis

Generate
Executable
Prototype

Demonstrate
Prototype

Domain Models

Domain Specific
Architectures

Reusable
Components

Production

user
feedback

analysis
results

optimize

Prototyping Environment

 8

D. SUMMARY

In this chapter, we presented “distributed systems” and “real-time systems” in

general. We introduced “rapid prototyping” and pointed out that the computer aid is the

key to rapid construction, evaluation, and evolution of such prototypes. We also

introduced an integrated software development environment, DCAPS, which supports an

iterative, rapid prototyping process.

 9

II. ISSUES RELATED TO DISTRIBUTED SYSTEMS

This chapter discusses various issues related to the development of distributed

systems. We first explain the benefits of distributed systems over standalone systems.

Second, we discuss the challenges of distributed systems such as latency,

synchronization, and fault tolerance. We then discuss the modeling strategies to build

distributed systems and their advantages and disadvantages.

A. BENEFITS OF DISTRIBUTED SYSTEMS

Standalone systems strictly depend on the resources of the local environment in

which they operate. Because of this limitation, distributed systems provide more benefits

than standalone systems. By building distributed systems, we can make use of different

resources, which are loosely coupled and have different capabilities. For example, if our

resources are not sufficient to build an application, we can build a distributed system,

which can access and make use of remote resources, to achieve our goal. Basic areas

where distributed systems provide more benefits than standalone systems are [FHA99]:

Performance, Scalability, Resource Sharing, Fault Tolerance and Availability, and

Elegance.

1. Performance

A single CPU is limited by its speed. If we want to optimize our application and

require better performance, the only thing we can do is to add another processor. Many

problems can be decomposed into smaller ones. We can distribute these smaller problems

over one or more processors to be computed in parallel. In principle, it appears that the

more processors we have, the more jobs get done. In reality this is not the case.

Continuously adding processors rarely results in perfect efficiency upgrade because of

communication overhead and because tasks are seldom perfectly partitionable.

Nevertheless, for many problems, this method (adding more processors) can reduce

running time.

 10

2. Scalability

When we write a standalone application, our computational power is limited to

the power and resources of a single machine. If instead, we build a distributed

application, we not only improve performance but we also create a scalable application.

This means that if the existing machines cannot solve the problem, we can add additional

machines without redesigning our application. We can scale our application according to

the size of the problem.

3. Resource Sharing

Some computational resources may be expensive or unavailable for local access.

We can support and coordinate remote access to such resources by constructing a

distributed system. For effective sharing, each resource must be managed by a program

that offers a communication interface enabling the resource to be accessed, manipulated,

and updated reliably and consistently [CDK96].

4. Fault Tolerance and Availability

Standalone applications have little or no tolerance for failure. If a standalone

application fails, it terminates and remains unavailable until it is restarted. Distributed

systems can tolerate a limited amount of failure because they are made up of multiple,

independent processes. Distributed systems can reduce “down-time” and maximize

availability if they are designed carefully.

5. Elegance

For many problems, distributed systems provide the most natural and easy

software solution. Many problems can be expressed as a dynamic relation of processes,

which work asynchronously and communicate with each other. We can also define the

world as a distributed system. For example, instructing a single worker to sequentially

assemble a car is an inefficient approach. This worker’s task would be overly complex

 11

and hard to maintain. Instead, we can divide the job into smaller parts and distribute

them over multiple workers. This approach reduces the complexity of worker’s tasks and

makes it easier to maintain the system.

B. CHALLENGES OF DISTRIBUTED SYSTEMS

Despite their benefits, distributed systems are notoriously difficult to design, build

and debug. The distributed environment introduces many complexities unencountered

when writing standalone applications. The most obvious complexity is the variety of the

machine architectures and software platforms over which a distributed application must

execute.

The existence of a networked environment also presents many challenges beyond

heterogeneity. Latency, Synchronization, and Partial Failure are the basic areas where

distributed systems present challenges [FHA99].

1. Latency

Communication over a network can take a long time relative to the speed of

processors. This time lag is called latency. Latency is typically several orders of

magnitude greater than communication times between local processes on the same

machine.

2. Synchronization

Communication is required but not sufficient to accomplish tasks in a distributed

system. Distributed processes must also synchronize their actions. For example, a

distributed algorithm might require processes to work in lock step in order to complete

one phase of an algorithm before proceeding to the next phase. Processes also need to

synchronize (essentially, wait their turn) in accessing and updating shared data.

Synchronizing distributed processes is challenging, since the processes are truly

asynchronous.

 12

Another important point in synchronization is the need for the equivalence of a

“global” clock, which may have significant impact on the performance of a distributed

system.

3. Partial Failure

Partial failure is another important challenge of distributed systems. The longer an

application runs and the more processes it includes, the more likely it is that one or more

components will fail or become disconnected from the network. It is important to design

distributed systems to be able to recover gracefully in the face of partial failures.

As mentioned, fault tolerance is an important aspect of distributed systems. It is

important to carefully design distributed systems to recover from partial failures in order

to gain the advantages of fault tolerance.

C. THE SEVEN FALLACIES OF DISTRIBUTED COMPUTING

Distributed systems introduce additional challenges than those of standalone

systems. The network is the source of these new challenges. We already discussed some

of these new challenges in this chapter (e.g., latency). Networks also fail in ways that

standalone systems do not.

A lot of history of networked systems programming is about making the network

transparent to the application programmers. Unfortunately, this simplification often turns

out to be an oversimplification. This simplification tries to assume that a network

connecting two software components will not affect the correctness of the program, only

its performance.

The hardest part of building reliable distributed systems are not problems with

packing data into portable forms nor invoking remote procedures; instead, the hardest

part is the challenges introduced by the networked environment that cannot be ignored by

the programmer. For example, the time required to access a remote resource may be

orders of magnitude longer than accessing the same resource locally. Networked systems

 13

are also susceptible to partial failures of computations that can leave systems in an

inconsistent state [EDW01].

Computer scientist Peter Deutsch has written about what he calls “The Seven

Fallacies of Distributed Computing” [EDW01]:

“Essentially everyone, when they first build a distributed application makes the

following seven assumptions. All prove to be false in the long run, and all can cause big

trouble and painful learning experiences.”

• The network is reliable

• Latency is zero

• Bandwidth is infinite

• The network is secure

• Topology does not change

• There is one administrator

• Transport cost is zero

D. MODELLING DISTRIBUTED SYSTEMS

Perhaps the most important phase in the software development process is

requirements analysis. It is difficult and expensive to correct design flaws and errors

discovered late in a software process. Faulty, inconsistent and error-prone requirements

result in flaws in the project.

Real-time systems have strict requirements for accuracy, safety and reliability.

Also, it is difficult to formulate and understand these requirements.

As we discussed before, distributed systems are notoriously hard to build and

design. If we are trying to build a distributed real-time system, then we must take into

account all problems introduced by such systems.

 14

It is a good idea to use prototyping to formulate and understand the requirements

and design decisions of such systems. Analysis and measurement of prototype designs

provide upper bounds on the time required to execute particular functions. Experiments

with simulated environments provide information about the accuracies and response

times required to keep external physical systems within desired operating constraints

[LUQ93].

Rapid prototyping is useful to overcome these difficulties. The key idea of rapid

prototyping is to construct prototypes of proposed software systems fast and with little

work. Then these prototypes can be used to evaluate the design and the requirements of

software systems.

The modeling strategy is important for making the rapid prototyping approach

work for real-time systems. Timing constraints complicate the design of real-time

systems because they introduce interactions between otherwise unrelated parts of the

system. A good modeling strategy helps to counteract this effect. This can be done in the

following ways [LUQ93]:

• By decoupling behavioral aspects of a system from its timing properties to

allow independent analysis of these two aspects, and

• By organizing timing constraints in a hierarchical fashion, to allow

independent consideration of smaller subsets of timing constraints.

An effective modeling strategy, therefore, supports a set of abstractions useful for

simplifying the timing aspects of systems with hard real-time constraints. PSDL supports

a modeling strategy based on dataflow graphs augmented with non-procedural timing and

control constraints [LUQ93]. Figure 2.1 shows a sample PSDL graph.

Distributed systems can be generally implemented using three models:

Client/Server Model, Distributed Object Model, and Tuple Space Model [KIN99].

 15

Figure 2.1 A PSDL Graph

1. Client/Server Model

The Client/Server model contains a set of server and client processes. A server

process acts as a resource manager for a collection of resources of a particular type such

as database server, file server, print server, etc. A client process communicates with the

server for the purpose of exchanging or retrieving information. Communication between

client and server can be achieved through sets of protocols agreed by both parties.

The Client/Server model provides an effective general-purpose approach to

sharing of information and resources in distributed systems. It is possible for both the

client and server processes to be run on the same computer. Moreover, some processes

are both client and server processes [CAA98]. That is, a server process may use the

services of another server, appearing as a client to the latter [SIN97].

The major drawback of the Client/Server model is that the control of individual

resources is centralized at the server and this could create a potential bottleneck and a

monitor_

environment

temperature
_ control

temperature valve_adjustment

fuel

temperature

valve_adjustment

valve_
control

valve_state

valve_state temperature

valve_state

 fuel

 gui

 16

single point of failure. Although many implementations have tried to overcome this

drawback by replicating storage data and functions across multiple servers (thus making

duplicate servers to either act as backups or serve different clusters of clients), this has

introduced new problems in terms of maintaining data consistency in servers.

a. Sockets

Sockets are low-level inter-process communication mechanisms similar to

file input/output mechanisms. These require developers to implement their own protocols

through which the client and the server communicate.

b. Remote Procedure Call (RPC)

Bierrel and Nelson [BAN84] introduced a different way to approach the

client-server model. They suggested that programs should be allowed to call procedures

located in other machines. This approach is known as Remote Procedure Call (RPC)

[CAA98].

RPC is a high- level communication paradigm that allows network

applications to be developed by way of specialized procedure calls. The major limitation

of RPC is that it only offers synchronous data exchange between the calling program and

the called procedure. Using RPCs to integrate applications also limits portability because

the application code becomes very dependent on the operating system. RPC is a widely

used technique that underlies many distributed operating systems [TAN95].

c. Message Oriented Middleware (MOM)

MOM is middleware that facilitates communication between distributed

applications. It supports both synchronous and asynchronous messaging. MOM sends

messages from one application to another using a queue as an interim step. Client

messages are sent to a queue and remain there until they are received by the server

application. The advantage of this system is that the server application does not need to

be available when the message is sent. MOM can also facilitate retrieval of messages

 17

using priority and load-balancing schemes. MOM can also provide a level of fault

tolerance using persistent queues.

2. Distributed Object Model

A distributed object based system isolates requestors of services from providers of

services by a well-defined interface. In a distributed object model, a client sends a

message to an object that in turn interprets the message to decide what service to perform.

This service could be performed either through an object or a broker.

Distributed object systems such as CORBA [ORB01] [CAD97] [ORB95], DCOM

[CAD97] [DCO97], and Java RMI [RMI00] provide the infrastructure for supporting

remote object activation in a client transparent way. A client application obtains a pointer

(or a reference) from a remote object, and invokes methods through that pointer as if the

object resides in the client’s own address space. The infrastructure takes care of all low-

level issues such as packing the data in a standard format for heterogeneous

environments, maintaining the communication endpoints for message sending and

receiving, and dispatching each method invocation to the target object.

3. Tuple Space Model

Tuples are typed data structures. Collections of tuples exist in a shared repository

called a “tuple space”. Coordination is achieved through communication taking place in a

tuple space that is globally shared among several processes. Each process can access the

tuple space by inserting, reading or withdrawing tuples [LBS01].

In this model, the programmer never has to be concerned with program explicit

message passing constructs and never has to manage the relatively rigid, point-to-point

process topology induced by message passing. Coordination is uncoupled and

anonymous. Here, “uncoupled” means the acts of sending (producing) and receiving

(consuming) data are independent of each other (akin to message passing). “Anonymous”

means processes’ identities are unimportant and, in particular, there is no need to “hard

wire” them into the code.

 18

E. SUMMARY

In this chapter, we first discussed the benefits and challenges of distributed

systems. We pointed out that performance, scalability, resource sharing, fault tolerance

and availability, and elegance are the areas that distributed systems provide more benefits

than standalone systems. But, we also pointed out the challenges introduced by

distributed systems such as latency and synchronization. Then we discussed the modeling

strategies to develop distributed systems. We emphasized the importance of rapid

prototyping in development of distributed systems.

 19

III. JINI AND JAVASPACES TECHNOLOGIES

In this chapter, we investigate Jini and JavaSpaces [EDW01] technologies in

detail. We discuss the basic characteristics of these technologies and explain how we can

use these technologies for inter-process communication in distributed real-time systems.

A. JINI

Jini is one of a large number of distributed system architectures (CORBA and

DCOM are others). It is distinguished by being based on the Java programming language

and deriving many features that leverage the capabilities that this language provides, such

as object-oriented programming, code portability, RMI, network support, and security.

In general, Jini technology is used for networking embedded systems that contain

a microprocessor and do a specific task. More specifically, Jini technology gives network

devices self-configuration and self-management capabilities; it lets devices communicate

immediately on a network without requiring human intervention [SAW01].

Jini technology consists of a programming model and a runtime infrastructure.

The programming model helps designers build reliable distributed systems as a federation

of services and client applications. The runtime infrastructure resides on the network and

provides mechanisms for adding, subtracting, locating, and accessing services. Services

use the runtime infrastructure to make them available when they join the network. Clients

use the runtime infrastructure to locate and contact desired services. Once the services

have been contacted, the client can use the programming model to enlist the help of

services in achieving its goals. Some of the features of Jini include [EDW01]:

• Enabling users to share services and resources over the network,

• Providing users easy access to resources anywhere on the network while

allowing the network location of the user to change, and

 20

• Simplifying the task of building, maintaining, and altering a network of

devices, software and users.

Jini redefines the concept of a client. Instead of providing a fixed set of “local”

devices, Jini supplies the Java client with a federation of remote “plug and play” devices

in a dynamic configuration (the federation) that is personalized for each client [EDW01].

Jini is focused around four main areas: Simplicity, Reliability, Scalability, and

Device Genericity [EDW01].

1. Simplicity

Jini defines how services connect to one another; it does not define what those

services are, what they do, or how they work. In fact, Jini services can even be written in

a language other than Java; the only requirement is that there exists, somewhere on the

network, software that is written in Java to participate in the mechanisms Jini uses to find

other Jini devices and services. From the perspective of Jini, everything, even a device

such as a scanner, printer or telephone, is really a service. To use an object-oriented

metaphor, everything in the world, even hardware devices, can be understood in terms of

the interfaces they present to the world. These interfaces are the services they offer, so

Jini uses the term “service” explicitly to refer to some entity on the network that can be

used by other Jini participants. The services these entities offer may be implemented by

some hardware device or combination of devices, or some pure software component or

combination of components.

2. Reliability

Jini does have similarities to a name server; it even provides a service for finding

other services in a community. But there are two essential differences between what Jini

does and what simple name servers do.

 21

Jini supports serendipitous interactions among services and users of those

services. That is, services can appear and disappear on a network in a very lightweight

way. Interested parties can be automatically notified when the set of available services

changes. Jini allows services to come and go without requiring any static configuration or

administration. In this way, Jini supports what might be called “spontaneous

networking”. Furthermore, every device or service that connects to a Jini community

carries with it all the code necessary for it to be used by any other participant in the

community.

Communities of Jini services are largely self-healing. This is a key property built

into Jini from the ground up. Jini does not make the assumption that networks are perfect,

or that software never fails. Given time, a Jini system will repair damage to itself. Jini

also supports redundant infrastructure in a very natural way, e.g. Jini lookup services on

multiple redundant machines reduce the possibility that services will be unavailable if

key machines crash. A Jini client that loses contact with a server can recover and

continue processing [SAW01].

These properties make Jini virtually unique among commercial-grade distributed

systems infrastructures. These properties ensure that a Jini community will be virtually

administration-free. Spontaneous networking means that the configuration of the network

can be changed without involving system administrators. The ability for a service to carry

with it the code needed to use it (via dynamic class loading) means that there is no need

for driver or software installation to use a service. Furthermore, the self-healing nature of

Jini also reduces administrative load.

3. Scalability

Jini addresses scalability through federation. Federation is the ability for Jini

communities to be linked together, or federated, into larger groups. Ideally, the size for a

single Jini community is about the size of a workgroup – that is, the number of printers,

PDAs, cell phones, scanners, and other devices and network services needed by a group

of 10 to 100 people.

 22

Jini supports access to other services in other communities via federating them

together into larger units. Specifically, the Jini lookup service (the entity responsible for

keeping track of all the services in a community) is itself a Jini service. The lookup

service for a given community can register itself in other communities, essentially

offering itself up as a resource for users and services there.

4. Device Genericity

Jini is generic with regard to devices. This means that Jini is designed to support a

wide variety of entities that can participate in a Jini community. These “entities” may be

devices or software or some combination of both; in fact, it is generally impossible for

the user of one of these things to know which it is. This is one of key contributions of

Jini. To use an “entity” (or service) we do not have to know whether that “entity” is

hardware or software. All we need to know is the interface this entity presents.

B. JAVASPACES

JavaSpaces is a service of Jini Technology [FHA99]. It is a high- level

coordination tool for gluing processes together into a distributed application. It is also a

departure from conventional distributed tools, which rely on passing messages between

processes or invoking methods on remote objects. JavaSpaces provides a fundamentally

different programming model that views applications as a collection of processes

cooperating via the flow of objects into and out of one or more spaces. This space-based

model (a tuple-space model that we discussed in previous chapter) of distributed

computing has its roots in the Linda [GEL85] coordination language developed by Dr.

David Gelernter at Yale University. There are a few similar implementations like

JavaSpaces, IBM’s Tspaces [TSP00] and Cloudscape’s Java database [CLO00], which

are built based on tuple-space model.

A space is a shared, network-accessible repository for objects. Processes use the

repository as persistent object storage and exchange mechanism; instead of

communicating directly, they coordinate by exchanging objects through spaces.

 23

Processes perform simple operations to write new objects into a space, take objects from

a space, or read (make a copy of) objects in a space. Processes use a simple value-

matching lookup to find the objects that matter to them in the case of reading or taking an

object from the space. If a matching object is not found immediately, then a process can

wait until one arrives. Unlike conventional object stores, processes do not modify objects

in the space or invoke their methods directly--while there, objects are just passive data.

To modify an object, a process must explicitly remove it, update it, and reinsert it into the

space.

To build space-based applications, we must design distributed data structures and

distributed protocols that operate over them [FHA99]. A distributed data structure is

made up of multiple objects that are stored in one or more spaces. For example, an

ordered list of items might be represented by a set of objects, each of which holds the

value and position of a single list item. Representing data as a collection of objects in a

shared space allows multiple processes to concurrently access and modify the data

structure.

Distributed protocols define the way participants in an application share and

modify these data structures in a coordinated way. For example, if our ordered list

represents a queue of printing tasks for multiple printers, then our protocol must specify

the way printers coordinate with each other to avoid duplicating efforts. Our protocol

must also handle errors: otherwise a jammed printer, for example, could cause many

users to wait unnecessarily for jobs to complete, even though other printers may be

available. While this is a simple example, it is representative of many of the issues that

crop up in more advanced distributed protocols.

Distributed protocols written using spaces have the advantage of being loosely

coupled because processes interact indirectly through a space (and not directly with other

processes). Data senders and receivers are not required to know each other's identities or

even to be active at the same time. Conventional network tools require that all messages

be sent to a particular process (who), on a particular machine (where), at a particular time

(when). Instead, using a JavaSpaces system, we can write an object into a space with the

expectation that someone, somewhere, at some time, will take the object and make use of

 24

it according to the distributed protocol. Uncoupling senders and receivers leads to

protocols that are simple, flexible, and reliable. For instance, in our printing example, we

can drop printing requests into the space without specifying a particular printer or

worrying about which printers are up and running, since any free printer can pick up a

task.

The JavaSpaces technology's shared, persistent object store encourages the use of

distributed data structures, and its loosely coupled nature simplifies the development of

distributed protocols.

1. Key Features

The JavaSpaces programming interface is simple, to the point of being minimal.

Applications interact with a space through a handful of operations. On the one hand, this

is good -- it minimizes the number of operations you need to learn for writing real

applications. On the other hand, it begs the question: how can we do such powerful things

with only a few operations? The answer lies in the space itself, which provides a unique

set of key features: Shareness, Persistentness, Associativeness, Transactional Secureness,

and Exchange of Executable Content [EDW01].

a. Shareness

Spaces are network-accessible "shared memories" that many remote

processes can interact with concurrently. A space itself handles the details of concurrent

access, letting us focus on the design of our clients and the protocols between them. The

"shared memory" also allows multiple processes to simultaneously build and access

distributed data structures, using objects as building blocks.

b. Persistentness

Spaces provide reliable storage for objects. Once stored in the space, an

object will remain there until a process explicitly removes it. Processes can also specify a

 25

"lease" time for an object, after which it will be automatically destroyed and removed

from the space.

 Because objects are persistent, they may outlive the processes that created

them, remaining in the space even after the processes have terminated. This property is

important and necessary for supporting uncoupled protocols between processes.

Persistence allows processes to communicate even if they run at non-overlapping times.

For example, we can build a distributed "chat" application that stores messages as

persistent objects in the space and allows processes to carry on a conversation even if

they are never present at the same time (similar to email or voice mail). Object

persistence can also be used to store preference information for an application between

invocations -- even if the application is run from a different location on the network each

time.

This feature of JavaSpaces may also introduce some problems related to

the storage capabilities. JavaSpaces storage capacity places a constraint on how many

objects we can store in the space at a given time. The number of objects needed to be

stored in the JavaSpaces must not exceed this capacity. Our application may exceed

JavaSpaces capacity by not controlling the flow and lifetime of objects stored in the

JavaSpaces. Objects must be removed from the JavaSpaces when we no longer need

them. Lifetime of objects stored in the JavaSpaces must be carefully designed so that we

never exceed the capacity of the JavaSpaces at any time.

c. Associativeness

Objects in a space are located via associative lookup, rather than by

memory location or by identifier. Associative lookup provides a simple means of finding

the objects we are interested in according to their content, without having to know what

the object is called, who has it, who created it, or where it is stored. To look up an object,

we create a template (an object with some or all of its fields set to specific values, and the

others left as null to act as wildcards). An object in the space matches a template if it

matches the template's specified fields exactly.

 26

d. Transactional Secureness

The JavaSpaces technology provides a transaction model that ensures that

an operation on a space is atomic (either the operation is applied, or it is not).

Transactions are supported for single operations on a single space, as well as multiple

operations over one or more spaces (either all the operations are applied, or none are).

Transactions provide a way to deal with partial failure. If an operation fails in a

transaction, then all operations under this transaction fail and none of them are applied.

e. Exchange of Executable Content

While in the space, objects are just passive data -- we cannot modify them

or invoke their methods. However, when we read or take an object from a space, a local

copy of the object is created. Like any other local object we can modify its public fields

as well as invoke its methods, even if we have never seen an object like it before. This

capability gives us a powerful mechanism for extending the behavior of our applications.

2. Advantages of JavaSpaces Technologies

If our application can be modeled as a flow of objects into and out of spaces (as

many can), then the JavaSpaces technology offers a number of compelling advantages

over other network-based software tools and libraries. Simplicity, expressiveness, loosely

coupled protocols, and code design are basic advantages of JavaSpaces [EDW01]:

a. Simplicity

The technology does not require learning a complex programming

interface; it consists of a handful of simple operations.

 27

b. Expressiveness

Using a small set of operations, we can build a large class of distributed

applications without writing a lot of code.

c. Loosely Coupled Protocols

By uncoupling senders and receivers, spaces support protocols that are

simple, flexible, and reliable. “Uncoupling” facilitates the composition of large

applications (we can easily add components without redesigning the entire application),

supports global analysis (we can examine local computation and remote coordination

separately), and enhances software reuse (we can replace any component with another, as

long as they abide by the same protocol).

d. Code Design

When writing a server, features such as concurrent access by multiple

clients, persistent storage, and transactions are reinvented time and time again.

JavaSpaces technology provides these functionalities for free; in most cases, we only

need to write client code, and the rest is handled by the space itself.

3. JavaSpaces Programming Model

JavaSpaces programming model is very simple and minimal. JavaSpaces has only

four types of operations.

• To write a new object to the JavaSpaces.

• To read an object from JavaSpaces.

• To take an object from JavaSpaces.

• To ask JavaSpaces notify us when objects that match a certain template

are written into the space [EDW01].

 28

The JavaSpaces interface is given in Appendix A.

a. write() method

The write() method is used to deposit a new entry into JavaSpaces. The

signature of the write() method is as follows:

Lease write (Entry e, Transaction txn, long lease)

 throws RemoteException, TransactionException;

The arguments are the Entry object to be written, the Transaction

associated with the write operation, and the initial requested lease duration expressed in

milliseconds. The Entry that is passed to the method is unchanged; it is serialized, and a

copy of it is stored in JavaSpaces. The method returns a Lease object, which can be

renewed manually by the client, or can be handled by a LeaseRenewalManager or other

code for renewal.

 If a Transaction object is passed to the write() method, then the operation

will not execute until the Transaction completes successfully. If there is no need for a

Transaction, then a null transaction parameter is passed to the method.

 If a call to this method returns without raising an exception, this means

that the entry object has been successfully written to the space. If a RemoteException is

raised, it is impossible to decide if the entry object has been successfully written or not

[EDW01].

b. read() and readIfExists() Methods

The read() and readIfExists() methods use the provided template to search

JavaSpaces. The template is compared against the Entry objects stored in the space

according to the attribute matching rules. If a match exists, this matching Entry will be

 29

returned, otherwise null will be returned. The signatures of the read() and readIfExists()

methods are as follows:

Entry read (Entry tmpl, Transaction txn, long timeout)

throws RemoteException,

 TransactionException,

UnusableEntryException,

 InterruptedException;

Entry readIfExists (Entry tmpl, Transaction txn, long timeout)

throws RemoteException,

 TransactionException,

UnusableEntryException,

 InterruptedException;

If there are multiple matching objects in the space, there is no guarantee

that the same object will be returned each time. Even if there is only one matching object,

a particular JavaSpaces implementation may return equivalent yet distinct objects each

time; that is, JavaSpaces may return two objects that have identical values as reported by

equals(), but they may be separate objects as reported by the “==” operator.

Passing a “null” template to these methods means that any Entry in the

space may be returned.

The difference between these two methods is in how they use their timeout

parameters. The read() method call will return a matching Entry if it exists, or wait for the

timeout period until a matching Entry appears. The readIfExists() method call will try to

return a matching Entry immediately if it exists, or null otherwise. It does not wait for a

matching Entry to appear.

 30

The readIfExists() method uses its timeout parameter if a matching Entry

is in a transaction. It blocks for the duration specified by the timeout parameter, if the

only possible match is involved in a transaction. If the transaction “quiesces” before the

timeout period, then the Entry will be returned. If the timeout elapses and there is no

matching Entry available that is not involved in a transaction, then null will be returned.

The read() method also considers transactions. It will wait until a matching

Entry appears, or until a matching Entry that is involved in a transaction stabilizes. If the

timeout elapses before either of these occurs, then null will be returned.

The NO_WAIT constant in the JavaSpaces interface is used as a timeout

value to mean that these calls should return immediately [EDW01].

c. take() and takeIfExists() Methods

The take() and takeIfExists() methods use the provided template to search

JavaSpaces like read() and readIfExists() methods. The signatures of the take() and

takeIfExists() methods are as follows:

Entry take (Entry tmpl, Transaction txn, long timeout)

throws RemoteException,

 TransactionException,

 UnusableEntryException,

 InterruptedException;

Entry takeIfExists (Entry tmpl, Transaction txn, long timeout)

 throws RemoteException, TransactionException,

 UnusableEntryException, InterruptedException;

 31

These two methods work just like read() and readIfExists() methods

respectively. They match a template, possibly block until some timeout elapses, and then

return a matching Entry or null. The difference is that read methods leave the matched

Entries in the JavaSpaces; the take methods remove them from the JavaSpaces [EDW01].

d. notify() Method

The notify() method is used to register for notification of future writes of a

specified entry. The signature of the notify() method is as follows:

EntryRegistration notify (Entry tmpl,

 Transaction txn,

 RemoteEventListener l,

 long lease,

 MarshalledObject obj)

 throws RemoteException, TransactionException;

This method takes an Entry as a template that will be matched against

future writes to the JavaSpaces. If a new Entry is written that matches the template, an

event will be sent to the listener specified in the notify method call.

In addition to the template, the method takes an optional transaction

parameter, a “RemoteEventListener” to send events to, requested lease duration in

milliseconds, and a “MarshalledObject” that contains a serialized object that will be

returned in any events generated as a result of this registration. The call to this method

returns an EventRegistration object containing the source and type of the events that will

come as a result of the registration, the Lease for the registration, and the last sequence

number sent for the event type.

 32

Sun’s specification for the JavaSpaces dictates that the service use full

ordering for sequence numbers of events from the service. So if the service sends an

event with sequence number 5 and then sends an event with sequence number 10, this

requires that there have been 4 intervening matches of written Entry objects that resulted

in events not seen by the caller, possibly because of network problems or out-of-order

delivery.

JavaSpaces service does not guarantee the delivery of events to the

registered clients; instead it makes a “best effort” attempt. If service catches a

RemoteException while trying to send an event to the client (through the invocation of

notify method of the client’s listener), it will periodically try to resend events until the

client’s lease expires [EDW01].

e. snapshot() Method

The snapshot() method is not a core operation of the JavaSpaces. It helps

to make interactions with JavaSpaces much more efficient. The signature of this method

is as follows:

Entry snapshot (Entry e) throws RemoteException;

The process of serializing an object in Java can be very time consuming,

especially if the object is large or has a complicated series of references within it. Any

object, which is passed as a parameter to one of the methods in the JavaSpaces interface,

must be serialized for transmission to the service. The snapshot() method gets an Entry

and returns an Entry. The returned Entry can be used in any future calls to the same

JavaSpaces that this method called on, and will avoid the repeated serializations process.

Essentially, the returned Entry from the call is a “token” that identifies the original object.

In cases such as writing the same object many times or using an Entry as a template to

search over and over again for matching objects, it may be beneficial to avoid the cost of

having to serialize the same object over and over again by using the snapshot() method.

 33

Since the returned Entry is a specialized representation of the original

entry, it is only valid as a parameter to methods on the JavaSpaces that generated it. So, it

is not possible to produce a snapshot of an Entry on one JavaSpaces and use this snapshot

on another.

It is also not possible to compare a snapshot to Entry objects that are

returned from a JavaSpaces server. This means that all of the methods that return Entry

objects return “non-snapshot” objects. Snapshots are only used as input parameters, not

return values.

Finally, there is no guarantee about the snapshot of a “null” parameter.

The snapshot of null depends on the specific JavaSpaces implementation [EDW01].

C. SUMMARY

In this chapter, we present Jini/JavaSpaces technology in detail. We discussed the

basic characteristics of this new technology. As a result, we can say that Jini/JavaSpaces

technology can be used as the complete basis for a new distributed systems programming

paradigm. Our idea here is that rather than building remote communication interfaces or

protocols for each new distributed application, applications can be defined in terms of the

set of objects they write into JavaSpaces and the set of objects they retrieve from

JavaSpaces. JavaSpaces interface would be the common API for interaction between

distributed applications. In the next chapter, we will discuss how we can use

Jini/JavaSpaces for inter-process communication in DCAPS.

 34

THIS PAGE INTENTIONALLY LEFT BLANK

 35

IV. ISSUES RELATED TO PSDL MODEL

In this chapter, we first discuss the basic characteristics of the Prototyping System

Description Language (PSDL) related to real-time system design and then explain why

current PSDL implementation is not sufficient for inter-process communication in the

development of distributed real-time systems. Finally, we offer a solution to improve the

current implementation.

We also discuss how we can implement dataflow and sampled streams defined in

PSDL using JavaSpaces for inter-process communication.

A. REAL-TIME CONSTRUCTS OF PSDL

Latency and Minimum Calling attributes are the advanced real-time constructs of

PSDL. Latency is defined as an upper bound on duration of the time interval between the

instant a data value is written into a stream and instant the data value becomes available

for reading from this stream. Minimum Calling period is a lower bound on the duration of

the interval between two successive write events on the stream [LUQ93].

If a user does not explicitly define latency and minimum calling period for a

stream, Latency and Minimum Calling Period values are set to zero by the current PSDL

model. This means that this stream has no delay and has an unbounded data rate.

Latency is an important constraint for distributed systems. The latency of a

communication link between two network nodes in a distributed system affects the

scheduling of tasks distributed over the network nodes. PSDL supports a modeling

strategy based on dataflow graphs augmented with non-procedural timing and control

constraints [LUQ93].

In addition to knowing the maximum latency between two nodes, it is important

to know the minimum time required to send data between two nodes in a target

distributed system. This value lets us determine when to start to listen for data. In the

current PSDL model, there are no mechanisms that allow us to define this minimum

amount of time for the target network.

 36

One possible way to solve this problem is to extend the PSDL model to describe

both the application design and characteristics of the target network and to use the target

network connection latencies as a lower bound on latency. The latency of the

communication link between two nodes must not exceed the latency of the stream, which

connects these two operators, declared by the user. This constraint is required but not

efficient for a real-time system. While minimum latency of a communication link is a

constraint of the real world and a property of the target network, the maximum latency is

a constraint declared by the user and characterizes the behavior of a real- time system.

The real- time systems have strict timing constraints and a failure can cause the

catastrophic results. This means that it is not enough to find a link with minimum latency

smaller than the latency declared by the user, but we also need to ensure that the latency

of the link will not exceed the latency declared by the user at any time.

The current implementation of the PSDL editor has the following problem

concerning edge latency: it is impossible for a user to define different latency values for

different streams with the same names, as illustrated in Figure 4.1.

Figure 4.1 A Hyperedge

B

A

C

e

 37

In this figure, the operator “A” is the producer and the operators “B” and “C” are

the consumers. The stream has a single name (identifier) and is modeled as a single

hyperedge.

The latency values between operators A-B, and A-C cannot be different because

the stream is the same. This problem with the PSDL model arises because of the way

hypergraphs are implemented in PSDL. PSDL expands the hyperedges as separate

streams with the same name. A hyperedge may have more than one source and one

destination. Figure 4.2 shows how the hyperedge in Figure 4.1 are expanded by PSDL.

Figure 4.2 Expansion of hyperedge in Figure 4.1

For a scheduler, a stream represents the communication link between two

operators. The communication link may or may not be the same even though the stream

names are the same. If we do not model the scheduler this way, we lose the opportunity

to distribute operators over a network efficiently. Let us assume that our scheduler tries to

distribute the sample graph in Figure 4.2 as in Figure 4.3 and the latency defined by the

user for the edge e is 0 ms.

B

A

C

e

e

 38

Figure 4.3 Partition of PSDL Graph over two Processors

Let us assume that the important latency is the latency between A-B and we want

it to be zero. It is impossible for us to define different latency values for the stream

between A-C in the current DCAPS tools because of the name of the edge connects these

operators are the same with the edge connects A-B. If our scheduler tries to distribute

operators as shown in Figure 4.3, and the latency of communication link between

Processor 1 and 2 is 100ms then this distribution would be invalid.

Another problem with the current PSDL model is the default value for the latency.

If a user does not define the latency explicitly, PSDL assumes that the latency for this

link is zero, which means no delay. This is not a big problem if the PSDL model lets us

explicitly define latencies for each producer/consumer tuple even though the stream

names for the tuples are the same. It is a better approach if the DCAPS tools allow the

user to set a default latency limit for all streams when the user chooses not to set an

explicit value. If the latency of a stream is important for the user, the possibility of

forgetting to set the latency value is unlikely. Additionally, if the system automatically

sets the default value to zero and users do not want the latency to be zero, then they must

enter a latency value for each edge they define. This can be time consuming and

annoying in a rapid prototyping environment.

B

A

C

e

e

P1 P2
A

 39

Future DCAPS implementations should treat each stream between

producer/consumer tuples as a communication link and let the user enter different latency

values. It should also allow users to set a default latency value for edges, when their

latencies are not declared explicitly. We can say that the communication link latencies in

the network should be the lower bound and the stream latencies should be the upper

bound for the latency between two operators in a PSDL graph.

B. IMPLEMENTATION OF DATAFLOW AND SAMPLED STREAMS
USING JAVASPACES

The implementation of dataflow and sampled streams is an important issue for

building a distributed real-time system using PSDL. PSDL makes important assumptions

about the networked environment. These assumptions include:

• There is no data loss,

• There are no breaks in the network, and

• The order of data arrival (produced by different producers) is not

important for the consumer of the data, but data from the same producer

are available to the consumer in the order they are produced

Much of the work in Jini (as in JavaSpaces) is designed to explicitly acknowledge

these assumptions, rather than pretend they do not exist. JavaSpaces takes into account

these assumptions and solves the problems related to them. As a result we can use

JavaSpaces as a communication platform to build distributed real-time systems specified

in PSDL.

JavaSpaces provides us a simple programming interface through a handful of

operations. This interface eliminates the need for us to re- invent new communication

protocols for each application. To build JavaSpaces based applications, we need to

design distributed data structures and distributed protocols that operate over them. A

 40

distributed data structure is made up of multiple objects that are stored in one or more

spaces. Representing data as a collection of objects in a shared space allows multiple

processes to concurrently access and modify the data structure. Distributed protocols

define the way participants in an application share and modify these data structures in a

coordinated way.

In this case, the data for the JavaSpaces would be the data represented by the

stream in PSDL. The distributed protocol would describe the way to write and read this

data to and from dataflow streams or sampled streams. If we want to use JavaSpaces for

inter-process communication in PSDL, all we need to do is to define the distributed

protocols for dataflow and sampled streams.

A PSDL data stream carries instances of an abstract data type associated with the

stream, which can be a special pre-defined type representing exceptions. A dataflow

stream is a discrete sequence of values, each of which has an independent meaning. The

values in a dataflow stream must be transmitted in FIFO order and must not be lost or

replicated. A sampled stream represents a continuous source of data, for which only the

most recent value is meaningful. The most recently written value in a sampled stream

must be available at all times and may be read many times or overwritten by more recent

data before it is read without effecting the collective meaning of the stream [LUQ93].

These definitions of the dataflow and sampled streams are enough for us to build

distributed protocols to implement these streams in JavaSpaces.

First, both streams carry instances of an abstract data type. These abstract data

types can (should) be implemented as Entry objects of the JavaSpaces.

Second, we must use operations of JavaSpaces such as take(), read(), write() and

notify(), to create the distributed protocols that implement (mimic) the operations of

dataflow and sampled streams.

 41

 1. Dataflow Streams

In this section, we present the implementation of dataflow streams using

JavaSpaces in detail. We will use NetworkDoubleFIFOBuffer as an example to explain

the implementation. The primitive “double value” used by the

NetworkDoubleFIFOBuffer is a 64-bit 754 floating point value [NAK00]. The

implementation of NetworkDoubleFIFOBuffer is given in Appendix E Section B.4.

In PSDL, a dataflow stream is instantiated only when an operator has a control

constraint “triggered by all …” associated with it. Dataflow streams can only be used if

the execution rate of the producer is less or equal to that of the consumer operators. It is

impossible for an operator to read from an empty data buffer because of this control

constraint. Dataflow streams act as FIFO buffers and model discrete transactions.

The NetworkDoubleFIFOBuffer class is instantiated by passing the identity of the

edge as a String object, the reference of the JavaSpaces that it will use and the latency of

this dataflow communication link as a primitive “long type” (64 bit signed two’s

complement integer [NAK00]).

 The distributed protocol, which is used by the NetworkDoubleFIFOBuffer, is

very simple. The use of this buffer differs according to the source and destination

operators of the edge that uses it. The source side application creates this buffer to write

to it while the destination side application creates it to read from it. There exist two

instances of the buffer for each stream. The buffer serves as a proxy (see Figure 4.4 for

details).

The source side application simply creates a NetworkDoubleFIFOBuffer and uses

its write() method to write to the stream. NetworkDoubleFIFOBuffer instantiates its

private variables and uses write() method of the given JavaSpaces to write the double

values to the stream when it is created at the source side. It creates EntryDouble objects

with the given double value and sets the identity of these Entry objects to the identity of

the stream.

The destination side application also creates a NetworkDoubleFIFOBuffer with

the same identity of the source application used. The difference is that it sets the

 42

notification of the buffer. The NetworkDoubleFIFOBuffer registers for the EntryDouble

objects with the given stream identity when it is set. When it gets a notification from the

space, it takes all the EntryDouble objects from the space until it gets the last one. It

stores the double values of these Entry objects in its variable vector. When the destination

application calls its read method, it returns the first double value in the variable vector.

2. Sampled Streams

In this section, we present the implementation of sampled streams using

JavaSpaces in detail. We will use NetworkDoubleSampledBuffer class as an example to

explain the implementation. The primitive “double value” used by the

NetworkDoubleSampledBuffer is a 64-bit 754 floating point value [NAK00]. The

implementation of NetworkDoubleSampledBuffer is given in Appendix E Section A.4.

If a PSDL stream has a “triggered by some” control constraint or has no control

constraint, it is instantiated as a sampled stream. Sampled streams act as atomic memory

cells and connect operators firing at uncoordinated rates. They model continuous data

sources. It is also important for a sampled stream to assure that data are always available.

The NetworkDoubleSampledBuffer class is very similar to the

NetworkDoubleFIFOBuffer class. It is also instantiated by passing the identity of the

edge as a String object, the reference of the JavaSpaces, which it will use, and the latency

of this dataflow communication link as a primitive “long type” (64 bit signed two’s

complement integer [NAK00]).

Like the NetworkDoubleFIFOBuffer, the use of this buffer differs according to

the source and destination operators of the edge, which use it. The source side application

creates this buffer to write to it while the destination side application creates it to read

from it. There exist two instances of the buffer for each stream. The buffer serves as a

proxy (see Figure 4.4 for details).

The source side application simply creates a NetworkDoubleSampledBuffer and

uses its write() method to write to the stream. The NetworkDoubleSampledBuffer

instantiates its private variables and uses the write() method of the JavaSpaces to write

 43

the double values to the stream when it is created at the source side (just like the

NetworkDoubleFIFOBuffer). It creates EntryDouble objects with the given double value

and sets the identity of these Entry objects to the identity of the stream.

The destination side application also creates a NetworkDoubleSampledBuffer

with the same identity of the source application used and sets the notification of the

buffer. The NetworkDoubleSampledBuffer registers for the EntryDouble objects with the

given stream identity when it is set. When it gets a notification from the space, it takes all

the EntryDouble objects from the space until it gets the last one. The main difference in

the distributed protocol used by the NetworkDoubleFIFOBuffer and the

NetworkDoubleSampledBuffer is that the NetworkDoubleSampledBuffer only stores the

double value of the last Entry object taken from the JavaSpaces in its EntryDouble

attribute. When the destination application calls its read() method, it returns the double

value of the EntryDouble attribute.

3. State Streams

If a network stream is specified as a state stream, then we can use a network

sampled buffer to implement this state stream. Network sampled buffers have two

constructors. The first constructor creates a network sampled buffer. The second

constructor takes an additional parameter, which is the initial value of the data carried by

the stream and creates a network buffer for this data. The second constructor is used to

create a network state stream.

4. Results

There are two benefits of implementing dataflow stream and sampled stream

buffers as proxies. First, they do not block the applications when they try to take an Entry

object from JavaSpaces. If we try to implement these buffers as Entry objects, then each

time when we try to write or read from the buffer we need to take it from JavaSpaces. If

another application tries to use this buffer at the same time, then it needs to wait for us to

finish our work and then write the buffer entry back to the space again. The same

 44

problem also exists if we try to create a distributed protocol by trying to find a sequence

for the method calls of JavaSpaces. Let us say we want to implement a sampled stream

by ordering the method calls. For example, for the source application, first take the entry

from the space then write the new one. For the destination application, just read from the

space. In this scenario, if there is more than one source for the given stream, then these

sources must wait for each other to take the object and write it back again to the space.

A second benefit of the proxy implementation of the network buffers is that when

we try to read from the buffers, we do not need to go to the network. They simply return

local variables. They store the current value of the stream as a local variable and they

return this value to the caller.

Figure 4.4 shows how network buffers work. This implementation is applicable to

both dataflow and sampled streams. As shown in Figure 4.4, a network buffer has two

instances as proxies in the source and destination sides. Source side buffer proxy writes

the given data to the JavaSpaces. When data (registered for notification) is written to the

JavaSpaces, JavaSpaces sends a notification to the destination side buffer proxy. The

destination side buffer proxy takes the data from the space and stores it in the local

storage. If destination side application wants to read from the buffer proxy, then buffer

proxy returns the data in the local storage. Because of this property, it takes a much

shorter time to read from the network buffers because they act as if they are local buffers.

 45

Figure 4.4 Network Buffer

Finally, both implementations create a snapshot of the entry templates so that they

prevent time-consuming serialization of the Entries each time they are searched.

source
operator destination

operator

write (1)

write (2) notify (3)

take (4)

network
buffer

network
buffer

local
storage

save (5)

read (6)

JavaSpaces

proxy proxy

new data?

network source side destination side

 46

THIS PAGE INTENTIONALLY LEFT BLANK

 47

V. IMPLEMENTATION

This chapter presents an example of implementing a user defined distributed real-

time system PSDL specification using network buffers for inter-process communication.

The purpose of this implementation is to demonstrate the use of proxy implementation of

network buffers and to create a program structure that can be used to generate code from

formal specifications.

A. PSDL SPECIFICATION OF THE DISTRIBUTED REAL-TIME SYSTEM

The Temperature Control System (TCS) is a good example to demonstrate the

concept of network delay. Assume that the system is intended to execute in a distributed

environment, consisting of two computing units. The architecture description of the TCS

in PSDL is shown in Figure 5.1. The TCS consists of monitor_environment,

temperature_control, valve_control and gui operators. The TCS behavior is modeled

using control and timing constraint structures of the PSDL like “triggered by some” and

“latency”.

The TCS controls the temperature of an environment. The environment

temperature tends to increase in time. The monitor_environment operator monitors the

temperature and passes this information to the temperature_control and gui operators.

Temperature_control operator checks the temperature if it is between 70 – 80 degrees. If

the temperature is above or below these limits, then temperature_control computes the

required adjustment for the control valve and passes this information to the valve_control

and gui. Valve_control reads the adjustment value and computes the new state of the

valve. Valve_control passes the valve state information to monitor_environment and gui.

 48

Figure 5.1 PSDL Architecture Description of Temperature Control System

The gui operator is used to present the state of the system to the user. It reports the

state of the system by showing current values of the temperature, valve adjustment, and

valve state. It also shows the remaining fuel and JavaSpaces status.

The temperature and valve_state state streams are used to simulate data from the

target system.

B. NETWORK PARTITION

We assumed that the TCS was intended to execute on a distributed system. We

also assume that the distributed system has two computation units. We need to partition

the PSDL specification of the TCS to deliver the operators over these computation units.

MET = 100 ms
MRT = 6000 ms
MCP = 3000 ms
TRIGGERED BY ALL
 valve_adjustment

monitor_

environment

temperature
_ control

 gui

temperature:double
LATENCY = 300 ms

valve_adjustment:double
LATENCY = 1000 ms

 fuel:double
 INITIALLY = 1.0 fuel:double

temperature:double

valve_adjustment:double

valve_
control

valve_state:double

valve_state:double
INITIALLY = 0.0

temperature:double
INITIALLY = 75.0

valve_state:double
INITIALLY = 0.0

MET = 100 ms
PERIOD = 3000 ms

MET = 200 ms
MRT = 6000 ms
MCP = 3000 ms
TRIGGERED BY SOME temperature
 IF true
OUTPUT valve_adjustment
 IF |valve_adjustment| > 0.01

 49

We must take into account the timing constraints to be able to partition the TCS

efficiently. Figure 5.2 shows a possible partition of the TCS. This partition places the

monitor_environment and temperature_control operators on the same computation unit

and gui and valve_control operators on the other computation unit.

Figure 5.2 A Possible Partition of the TCS

The partition does not suggest which computation unit these operators should be

delivered. The partition only suggests which operators will be executed on the same

computation unit. This means that we are free to choose the particular computation unit if

there are no other constraints. There can be a user-defined constraint that requires a

specific operator to be executed on a specific computation unit. Additionally, the capacity

of a specific computation unit may not be sufficient to execute a specific operator

MET = 100 ms
MRT = 6000 ms
MCP = 3000 ms
TRIGGERED BY ALL
 valve_adjustment

monitor_

environment

temperature
_ control

 gui

temperature:double
LATENCY = 300 ms

valve_adjustment:double
LATENCY = 1000 ms

fuel:double

fuel:double
INITIALLY = 1.0

temperature:double

valve_adjustment:double

valve_
control

valve_state:double

valve_state:double
INITIALLY = 0.0

temperature:double
INITIALLY = 75.0

valve_state:double
INITIALLY = 0.0

MET = 100 ms
PERIOD = 3000 ms

MET = 200 ms
MRT = 6000 ms
MCP = 3000 ms
TRIGGERED BY SOME temperature
 IF true
OUTPUT valve_adjustment
 IF |valve_adjustment| > 0.01

Partition Cut

 50

presenting a constraint that must be satisfied. In our implementation, we choose the

computation unit 1 to execute the gui and valve_control operators and computation unit 2

to execute the monitor_environment and temperature_control operators. We assume that

all of the operators can be delivered to either of these computation units.

Let us analyze this partition to determine whether or not it is feasible.

The temperature_control and valve_control operators are sporadic operators. We

can find their corresponding “triggering period” using:

MET � TP � min(MRT-MET, MCP)

and their “finish within” values using:

FW = min(TP, MRT-TP)

According to these formulas, “triggering period” and “finish within” values for

the temperature_control operator are 3000 ms and 3000 ms respectively. “Triggering

period” and “finish within” values for the valve_control operator can be found as 3000

ms and 3000 ms respectively.

We can now calculate the Least Common Multiple (LCM) of the TCS. We have

three time critical operators. All of them have the same period value of 3000 ms.

Therefore, the LCM of the TCS is 3000 ms. Figure 5.3 shows the timing analysis of the

TCS using the partition in Figure 5.2.

 51

Figure 5.3 Timing Analysis of TCS

As shown in Figure 5.3, it is possible to find a feasible schedule for this partition.

An important point here is we need take into account the latency, which is not declared as

a constraint in the specification. The valve_state state stream between valve_control and

monitor_environment in the specification becomes a network state stream according to

our partition as shown in Figure 5.3. As we explained in Chapter IV, if a user does not

declare a latency value for an edge, we must assign a default value for it. We assume that

the default latency value for the TCS is 1100 ms.

The various properties extracted from the architecture description of TCS in

Figure 5.1 are summarized in Table 5.1. This table shows the source and destination

operators of each stream, the type of the stream (dataflow, sampled, or state), and how we

will implement the TCS streams according to their specifications (network or local). The

table also shows the maximum latenc ies declared for each stream. If there is no latency

constraint for a stream, then we assume that the latency constraint for this stream is the

default latency value.

me1 tc1

vc1

me2 tc2

vc2

me3
CU 1

CU 2 time (ms)
0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000

latencies (Note: CU = Computation Unit)

 52

Stream Name Source Operator Destination

Operator

Stream

Type

Buffer

Type

Max.

Latency

temperature monitor_environment temperature_control sampled local 300 ms

temperature monitor_environment gui sampled network 1100 ms

temperature monitor_environment monitor_environment state local 1100 ms

valve_adjustment temperature_control valve_control dataflow network 1000 ms

valve_adjustment temperature_control gui sampled network 1100 ms

fuel temperature_control gui sampled network 1100 ms

fuel temperature_control temperature_control state local 1100 ms

valve_state valve_control gui sampled local 1100 ms

valve_state valve_control monitor_environment state network 1100 ms

valve_state valve_control valve_control state local 1100 ms

Table 5.1 Properties of TCS Streams

As shown in Figure 5.3, total latency is made up of two components: latency in

the local computation unit and latency in the network. The reason for this is that when

our application tries to write to a network buffer, it uses its own CPU to accomplish this

task. The write operation is a blocking operation. We can fire a new thread to do this job

but then we cannot be sure about the sequential execution of the application because of

operating system issues (such as scheduling tasks). Even if we use a separate thread we

cannot save CPU time because the write operation must be executed on that CPU. As a

result, we must take into account the latencies introduced by the network operations in

our scheduling as shown in Figure 5.3.

The GUI operator is a non-time-critical operator. Some of the streams, which are

related to this operator, become network streams as a result of the partition. These

streams have no defined latencies as shown in Figure 5.1 and Table 5.1. We will also use

the default latency values for these streams and try to fire the gui operator in

 53

computational unit 2 when it is available. Figures 5.4a and 5.4b show screen shots of the

GUI operator used in the implementation of the TCS.

Figure 5.4a Application Screen Shot while waiting for Start Notification

Figure 5.4b Application Screen Shot while Running

■JavaSpace Status

Connected

pace Server Codebase

http://131.120.8.41:8081/

^jjcj

Current Temperature (C)

not available

Current Valve Adjustment (%)

not available

Remaining Fuel (gallons)

not available

, Current Valve State

not available

JavaSpace Status

Connected

JavaSpace Server Codebase

http://131.120.8.41:8081/

Jnjjcj

Current Temperature (C>

80.19999999999897

Current Valve Adjustment (%)

0.1

mainlng Fuel (gallons)

0.9790000000000023

Current Valve Stale—

0.2

 54

C. JAVASPACES INTERFACE

When we partition our specification, the streams (with their source and

destination operators) connecting different computation units become network streams.

The data values, which are carried on these streams, must be passed to the destination

operators using a network buffer which is different than a local buffer. It takes relatively

more time to access network stream data than local data.

In Chapter IV, we defined network buffer implementations and explained their

usage. We will use that implementation of network buffers in our sample implementation

of the TCS.

The network buffers have the same interface as local buffers. An important

feature of the network buffers implementation using JavaSpaces is that they store their

data on the local machine. This feature allows the network buffers to act as if they are

local buffers. Thus, using a JavaSpaces implementation, the read method access time for

a network buffer is no different than that of a local buffer. Of course, the network

introduces latencies for these buffers and if no data value is available for update of the

buffer, users may read null values or old values of a stream. This feature of the network

buffers helps us to implement them in separate threads so that our main application does

not have to wait for a network operation. Network buffers register themselves to

JavaSpaces and then start to wait for the event (data) notifications from JavaSpaces. The

application may use its main thread to invoke the required methods of these buffers when

it gets those notifications from JavaSpaces or it may create a new thread to invoke the

required methods. In each case, our application creates a simple thread for the execution

of the harmonic block separated from the other threads of execution.

D. PROGRAM STRUCTURE

We will describe the program structure of the TCS implementation in this section.

The class diagram of the application part for the processor 1 is shown in Figure 5.5.

 55

 1 1 1

 1

 1
 1
 1 1

 1 1 1 1
 1

 * 1
 1

 1

 1 1

 1 1 1 1

 1
 1
 2

 1
 *

 1 1

 *

Figure 5.5 Class Diagram of Application Part 1

ProcessorOne

beginning: long
last: long
period: long
fuelGUI: Double
temperatureGUI: Double
valve_adjustmentGUI: Double
valve_stateGUI: Double
valve_adjustmentVC: Double
valve_stateVC: Double

start(): void
getJiniScheme(s: String): void

Discovery

getRegistrar(url: String): ServiceRegistrar
findJavaSpaces(reg: ServiceRegistrar): void
discoverJavaSpaces(url: String): JavaSpace

Listener

notify(ev: RemoteEvent): void

NetworkDoubleFIFOBuffer

variable: Vector
id: String
latency: long
newData:Boolean

read(): double
write(value: double): void
newData(): Boolean
setNotification(): void
readFromSpace(): void

NetworkDoubleSampledBuffer

id: String
latency: long
newData:Boolean

read(): double
write(value: double): void
newData(): Boolean
setNotification(): void
readFromSpace(): void

DoubleStateStreamBuffer

variable: double

read(): double
write(value: double): void

EntryDouble
EntryID: String
EntryDouble: Double

net.jini.core.entry.Entry

GUI

gui(): void

Valve_Control

valve_control(): void

StartEntry

message: String

net.jini.space.JavaSpace

EvtListener

notify(ev: RemoteEvent): void

 56

The program for the implementation of the TCS starts with the declaration of

import statements required for source code of the local buffers, network buffers,

JavaSpaces, Jini packages, SpaceDiscovery classes, RMI classes, and “swing” and “awt”

classes.

Each part of the distributed application, which will execute on a different

computation unit, is created as a public class. Each class has a private JavaSpaces

attribute to use in the construction of network buffers as shown in Figure 5.5. The main

class constructor initializes the private JavaSpaces object using the Discovery static class.

The main class declares local, and network stream buffers as private attributes. Some of

the other attributes of the main class are the instances of the operator objects, which are

implemented as inner classes within the main class.

As shown in Figure 5.5, the main class also has other attributes such as the LCM

of the application and instance of stream values. The last attributes of the main class are

the “beginning” and “last” long primitive types to be used as timestamps for the harmonic

block. All attributes of the main class are declared as private types and all of them are

initialized in the constructor.

The operators are implemented as inner classes within the main class. The main

class also has another inner class to be used as a listener for the JavaSpaces to get

notifications of each period cycle.

The first inner class is the “Listener” inner class. The Listener inner class is

registered and gets notifications of each period cycle from the JavaSpaces. The inner

class has a default constructor, which does nothing. The reason for a default constructor

for this inner class is that it throws RemoteException. Because of this we must declare

this constructor explicitly. The Listener inner class has only one method called “notify()”

which returns “void”. This method is called by JavaSpaces when the instances of the

registered objects of this class are written to JavaSpaces. Our application calls the start()

method to implement a harmonic block. The call for the start() method is placed into this

notify() method.

 57

The other inner classes are implementation specific and they contain the code for

the operators. These inner classes declare a method with the same name of the operator in

the specification of the application. These methods are called to fire the operators by the

“start” method of the main class. These operator inner classes have their own attributes to

be used as stream variables for the operator itself.

The most important part of the main class is its constructor. The constructor starts

with the initialization of the JavaSpaces attribute. The constructor uses the

discoverJavaSpace() method of the static Discovery class. If the initialization fails (the

discoverJavaSpace() method returns null) the application informs the user and exits with

error code 0.

If our application manages to find and gets a reference to the JavaSpaces object,

then it starts the initialization of the other attributes. It first starts with the initialization of

local, and network buffers. Network buffers need a reference to a JavaSpaces object so

our application passes its own JavaSpaces object reference to the constructors of these

network buffers.

When our application finishes with the initialization of the buffers, it starts the

initialization of operator instances that were implemented as inner classes.

The last thing that occurs in the constructor is the registration of the objects for

period start time. Our application constructor creates a new instance of a StartEntry

object, and a Listener object to pass to the notify() method of the JavaSpaces object. It

then informs the user by printing the statement “Waiting for start notification…” to the

standard output path. The notify() method of the JavaSpaces interface may throw

RemoteException or TransactionException as explained in Chapter IV. If this happens

our application informs the user using the standard output path and exits with error

code 0.

The last point about the application is its start method. The Listener inner class’s

notify() method calls this method each time it gets a notification from JavaSpaces. This

method creates a new thread and fires the operators by calling their corresponding

methods according to the timing constraints defined for this application. The start method

 58

reads the required stream variables from the buffers and does the required checks for the

control constraints related to each operator.

The application we explained here is only one part of our implementation of the

TCS for a two node distributed application. The other part of the implementation, which

will be executed on the other computation unit, has the same characteristics except that it

initializes its own local, network and state streams. The other part will also have different

inner classes, which implement operators to be executed on the second computation unit.

E. MASTER APPLICATION

We need to control our distributed application by using a global clock to

synchronize the execution of each program unit. We stated that our application starts to

wait after initialization of environment variables. All we need to do is to notify our

applications to start execution. Additionally, we must notify them at the beginning of

each period cycle to synchronize them.

One way to undertake this synchronization is to use a master application. This

master application must start the distributed application when our distributed application

parts are ready to run.

The Starter class is the master application for our TCS implementation. Figure 5.6

illustrates a screen shot of this master application. The Starter master application asks for

the JavaSpaces Codebase property, a system policy file, and the LCM of the distributed

application. The default values are printed for us by getting the required information from

the system properties (if those properties are set by passing this information to the master

application in the command line).

 59

Figure 5.6 Master Application Screen Shot

Upon execution of the “Start Distributed Application” button, the Starter master

application creates a new instance of StartEntry and writes it to the JavaSpaces. The

Starter master application writes this entry in the beginning of each LCM (which is given

to the Starter master application by the user) cycle to synchronize the distributed

application.

F. RESULTS

The purpose of this implementation was to identify the efficiency of the proxy

implementation of the network buffers and to create a program structure to generate code.

We ran this application on a local area network that consisted of a Windows NT machine

and Unix Workstation machine, isolated from the rest of the network in order to decrease

the network traffic. We wanted to observe if our application was capable of properly

running in a heterogeneous environment. We used the WindowsNT machine as

computation unit 1 and the Unix Workstation as computation unit 2 in the first

experiment and then switched the machines for the second experiment (Windows NT as

computation unit 2 and Unix Workstation as computation unit 1). The JavaSpaces server

was running on the WindowsNT machine. The results of the implementation showed that

our proxy implementation of network buffers are efficient and properly handle the inter-

process communication but unpredictable latencies introduced by the network sometimes

caused our application fail. We observed that proxy implementation of the network

i-mi J X

JavaSpace Server Codebase http^/131 120.8.41 808U

Security F*e i Ipolicv all

LCM (miliseconds) 500

Status Availing foi start command

Start Distributed Application

 60

buffers work properly for inter-process communication but the underlying network must

have real-time support. Another important point is that we ran the JavaSpaces server on

the WindowsNT machine. This increased the load of computation unit 1 and increased

the latencies for JavaSpaces operations.

 61

VI. EXPERIMENTS AND RESULTS

This chapter presents the results of experiments conducted to measure the

response time of Jini/JavaSpaces service for inter-process communications. The behavior

of a network is unpredictable because of the variable queuing delays, congestion losses,

routing protocols, and traffic load. A distributed real- time application has strict

requirements for throughput, delay, jitter, and packet loss. These requirements are

difficult to meet in an environment with variable queuing delays and congestion losses.

For an IP-based network that provides only a best-effort service, the tools for controlling

congestion and providing service are limited [STA99]. Also, the response time of the

Jini/JavaSpaces service not only depends on the underlying network but also depends on

the computing power of the machine we run these services. Because of these reasons, it is

hard to determine a specific response time of Jini/JavaSpaces service. Instead, we tried to

determine an average response time against which we can compare the Jini/JavaSpaces

service performance.

Name
OS

Name
Version

System
Type

Processor
Total
Phys.
Mem.

Total
Virt.
Mem.

Network
Connection

Turtle1
Microsoft

Windows
2000 Pro

5.0.2195
Service
Pack 1

Build 2195

X86 based
PC

Pentium 4

X86 Family
15 Model 0
Stepping 7

~1396 Mhz

524 KB 1800 MB 10/100 Mbps

Sun58 Solaris Release 5.7 SUN
workstation

Sparc 10

40 Mhz
96 MB 1056 MB 10 Mbps

Norma Solaris Release 5.7 SUN
workstation

UltraSparc11i
270 Mhz 128 MB 1107 MB 100 Mbps

Saturn Solaris Release 5.7 SUN
workstation

UltraSparc11i

270 Mhz
128 MB 1107 MB 100 Mbps

Moon Solaris Release 5.7 SUN
workstation

UltraSparc11i
300 Mhz

128 MB 1107 MB 100 Mbps

Table 6.1 Systems used in Experiments

 62

As mentioned, DCAPS targets heterogeneous distributed system development. As

a result of this, we need to test the performance of the Jini/JavaSpaces service in a

heterogeneous environment. We used different operating systems and machines to test

the performance of Jini/JavaSpaces for this purpose. Table 6.1 shows the specifications of

the systems we used for our experiments.

A. TEST PROGRAM

A simple test program was developed and used for the experiments. Figures 6.1a,

b, and c show screen shots of this test program.

Figure 6.1a Test Program Main Window

Figure 6.1b A Client created by Test Program

g£ ClientGenerator ^Jn
Generate new client

!S>' Client 1 -|n| X|
JavaSpace Founded! *

v

Write Read Take

ReadlfExists TaketfExists Notify

TestWrite TestRead TestTake

TestWriteSnapshot TestReadSnapshot

 63

Figure 6.1c A Pop-up Dialog used by Test Program

The Sun58 workstation and Turtle1 resided on the same local area network. These

two machines were isolated from the other machines (Norma, Saturn, Moon) in the LAN

by a bridge to reduce the network traffic for experiment purpose.

The test program generates clients for the Jini/JavaSpaces service. These clients

are capable of discovering a local Jini/JavaSpaces service or can be directed to discover a

Jini/JavaSpaces service, which is not local, by passing the IP address of the Jini lookup

service.

The clients generated by the test program have a simple GUI that allows users to

use services of JavaSpaces. The clients also allow us to try different experiments. These

experiments are: test for write() method, test for read() method, test for take() method,

and test for write()/read() methods using snapshot() method. These default experiments

ask users to enter desired experiment specific values such as number of attempts for

write() method. All experiments log the results of the experiments to a file passed to the

test program as a command line argument. We developed different experiment scenarios

by combining default experiments or by generating several clients on the same or

different machines.

lookup 2iJ

Do you want to search for a local lookup service?

Yes No

 64

B. EXPERIMENTS

The response time diagrams of the JavaSpaces server for different services are

illustrated in this section. We conducted different experiments to measure an average

response time of JavaSpaces. Experiment results are shown by a response time diagram

(JavaSpaces response time for a request) for each machine (if more than one machine was

used for the experiment). Each experiment uses a different scenario to test the

performance of the JavaSpaces service under different conditions and determines the

overall performance of the JavaSpaces service. We used the same entry for all

experiments. The entry, used in the experiments, had an identity (1 byte), message (3

bytes), and a timeout value (primitive long type, 64-bit signed two’s complement integer

[NAK01]). Therefore, the total size of the entry was 12 bytes. The goal of the

experiments was to measure an average response time of the JavaSpaces service, not to

measure an average response time of the JavaSpaces service for different sizes of data.

Data statistics collected from the experiments are presented and summarized at

the end of this chapter.

1. Experiment 1

The goal of this experiment was to measure the average response time of the write

service of JavaSpaces under light load. We used only one client and made sure that there

were no other applications running on the server side and client side (except the system

tasks).

A client, created by the test program on the Sun58 workstation, contacted the

JavaSpaces server, which was running on the Turtle1. The client attempted to write an

entry 500 times to JavaSpaces. There were no other applications running on Turtle1

(except the JavaSpaces server and other system tasks).

The chart in Figure 6.2 shows the response times of the JavaSpaces server for

each write attempt.

 65

Figure 6.2 Response Time Diagram of Experiment 1

As shown in Figure 6.2, the response times were generally around 50 ms. As we

expected, we had some longer response times as a result of unpredictable nature of

underlying network, operating system and overhead introduced by JavaSpaces itself. As

mentioned, the Turtle1 and Sun58 workstations were isolated from the rest of the network

to reduce the network effects, so we conjectured that the underlying network had the

minimum effect on these higher response times than the operating system and overhead

introduced by JavaSpaces. An important observation was the maximum response time.

The maximum response time (456 ms) occurred in the first attempt. JavaSpaces logs all

contacts in a log file, so first attempt took relatively longer to process than the average

response time as a result of this registration process.

500

450'-

 66

2. Experiment 2

In this experiment, we tried to measure the performance of JavaSpaces under

relatively higher load than the load in experiment 1. Our goal was to observe JavaSpaces

performance when two different clients tried to use the write service at the same time.

Two clients, created by the test program on the Sun58 workstation, contacted the

JavaSpaces server, which was running on Turtle1. Both clients attempted to write an

entry 500 times to JavaSpaces at the same time. There were no other applications running

on Turtle1 and Sun58 (except the JavaSpaces server and other system tasks).

The charts in Figure 6.3a and b show the response times of the JavaSpaces server

for both clients. As mentioned in experiment 1, we had relatively higher response times at

first attempts for both clients.

Figure 6.3a Response Time Diagram of first Client in Experiment 2

600

 67

Figure 6.3b Response Time Diagram of second Client in Experiment 2

The first client response times changed between 50 – 600 ms while the second

client response times grouped around 50 ms. The response times of the first client tends

to settle around 40 ms but it had obviously more unpredictable response times than the

second client. The maximum response time of the experiment was 1995 ms and occurred

with the second client. This was interesting because the second client had relatively

uniform response times compared to the first client. We might conclude that this was a

result of the underlying network traffic and due to congestion occurring in the network

during that particular attempt. But, as explained in experiment 1, the Turtle1 and Sun58

workstations were isolated from the rest of the network. This prevents us from

concluding that this was a result of the network traffic. We conjecture that this

unexpected high response time was a result of an overhead introduced by the operating

systems on the workstations or by JavaSpaces itself.

2000

1800 -

1600 -

1400 -

JH200
111

E
^ 10001-

| 800
ir.

600 -

400^-

200 -
%

0 ■h&mmm* mämägms^mm

.*.._

0 50 100 150 200 250 300
Test Case

350 400 450 500

 68

3. Experiment 3

This experiment was same as the experiment 1 except that we used the read

service instead of the write service of JavaSpaces. We used only one client, so the load on

JavaSpaces was low.

A client, created by the test program on the Sun58 workstation, contacted the

JavaSpaces server, which was running on Turtle1. The client attempted to read an entry

500 times from JavaSpaces. There were no other applications running on Turtle1 and

Sun58 (except the JavaSpaces server and other system tasks).

The chart in Figure 6.4 shows the response times of the JavaSpaces server for

each read attempt.

Figure 6.4 Response Time Diagram of Experiment 3

250

200 -

1150 h

t

6)
C

1100

SO -

*

.*

mii^äm&mhhmiii» ■■w*C**.»*

0 50 100 150 200 250 300 350 400 450 500
Test Case

 69

As expected, the response times of the JavaSpaces were similar to those of

experiment 1. However, the response times were also more uniformly distributed than

those of experiment 1 and we had relatively fewer response times that were higher than

the average. We conjecture that this is the result of the overhead introduced by the

operating systems or by JavaSpaces itself as in experiment 1.

4. Experiment 4

The goal and scenario of this experiment was the same as that of experiment 2

except that we used the read service instead of the write service of JavaSpaces. We

created two clients on the Sun58 workstation to have the same load on JavaSpaces as that

of experiment 2.

Two clients, created by the test program on the Sun58 workstation, contacted the

JavaSpaces server, which was running on Turtle1. Both clients attempted to read an entry

500 times from the JavaSpaces. There were no other applications running on Turtle1 and

Sun58 (except the JavaSpaces server and other system tasks).

The charts in Figure 6.5a and b show the response times of the JavaSpaces server

for each client respectively. We had similar response time diagrams to those of

experiment 2 for both clients.

 70

Figure 6.5a Response Time Diagram of first Client in Experiment 4

350

 71

Figure 6.5b Response Time Diagram of second Client in Experiment 4

We conjectured that JavaSpaces has similar performance to those of write service

for the read service, because we had similar response time diagrams for experiment 2 and

4 under the same load.

5. Experiment 5

This experiment was same as experiment 1 except that we used the Norma

workstation. Our goal was to observe the performance of JavaSpaces with a different type

of machine. We used only one client, so the load on JavaSpaces was low.

A client, created by the test program on the Norma workstation, contacted the

JavaSpaces server, which was running on Turtle1. The client attempted to write an entry

250

200 -

1150

t

*

0 50 100 150 200 250 300 350 400 450 500
Test Case

 72

500 times to JavaSpaces. There were no other applications running on the Turtle1 and

Norma workstations (except the JavaSpaces server and other system tasks).

The chart in Figure 6.6 shows the response times of the JavaSpaces server for

each write attempt.

Figure 6.6 Response Time Diagram of Experiment 5

As seen in this chart, the response times of the JavaSpaces service grouped around

20 ms that is less than that of the Sun58 workstation, which resided on the same LAN

with the JavaSpaces server. We also had lower response times than other experiments

conducted with Sun58 workstation. We conjectured that the reason for this is that Norma

workstation has a faster CPU (270 Mhz) and network connection (100 Mbps) than the

Sun58 workstation (40 Mhz and 10 Mbps) and was thus able to overcome any

communications latency presented by the fact that Norma was not isolated from the rest

of the LAN.

110^

100 I-

90 -

80 -

1 70

! 60h
6)
C

I 50
et

* *

40 h**

*

**.

* *

*

*
30 -

20

10

..:.***.*.**

miw* :*** : I * : **
****** #; * # i*^ *

** i * ****■»». *■■

50 100 150 200 250 300 350 400 450 500
Test Case

 73

We also observed that we had a lot of scattering in response times for this

experiment. We conjectured that this was the result of a relatively high network traffic

occurring during the experiment than those of other experiments.

6. Experiment 6

This experiment was similar to experiment 5 except that we measured the read

service performance of JavaSpaces instead of write service. The goal of this experiment

was to test the performance of the read service of JavaSpaces. We used only one client,

so the load on JavaSpaces was low.

A client, created by the test program on the Norma workstation, contacted the

JavaSpaces server, which was running on Turtle1. The client attempted to read an entry

500 times from JavaSpaces. There were no other applications running on the Turtle1 and

Norma workstations (except the JavaSpaces server and other system tasks).

The chart in Figure 6.7 shows the response times of the JavaSpaces server for

each read attempt.

 74

Figure 6.7 Response Time Diagram of Experiment 6

As in experiment 5, we observed that the response times of the JavaSpaces was

relatively lower than that of experiments conducted with Sun58 workstation. We had also

more uniformly distributed data than the experiment 5. We conjectured that the reason for

relatively lower response times was the better CPU and network connection capabilities

of Norma workstation than the Sun58 workstation as mentioned in experiment 5. We

conjectured that the reason for more uniformly distributed data was relatively lower

traffic in the network during this experiment than experiment 5.

7. Experiment 7

In this experiment, our goal was to measure the performance of JavaSpaces under

relatively higher load. We used two different clients, each on a different machine (resided

450 500

 75

on a separate LAN with JavaSpaces server), and attempted to use the JavaSpaces write

service at the same time.

Two clients, created by the test programs, one on the Norma workstation and one

on the Saturn workstation, contacted the JavaSpaces server, which was running on

Turtle1. Both clients tried to write an entry 500 times to JavaSpaces at the same time.

There were no other applications running on the Turtle1, Norma, and Saturn workstations

(except the JavaSpaces server and other system tasks).

The charts in Figures 6.8a and b show the response times of the JavaSpaces server

for each write attempt for the clients on the Norma and Saturn workstations.

Figure 6.8a Response Time Diagram of Client on the Norma in Experiment 7

110

100 I-

90 -

80 -

*.:**;* I *
: ■ *

50 100 150 200 250 300 350 400 450 500
Test Case

 76

Figure 6.8b Response Time Diagram of Client on the Saturn in Experiment 7

As seen in Figure 6.8a, the response time diagram of the Norma workstation had

an interesting upward trend. It also had unexpectedly higher response times than the

Saturn workstation. The Saturn workstation also had an upward trend between attempts

150 – 440. This experiment was the first experiment we ran two different clients

concurrently on two different machines. If noticed, we also had two clients running

concurrently in experiment 4. But those clients were running on the same machine, so

they were actually not running concurrently: they were simply using the same CPU. We

conjectured that this was the reason of the upward trend in Norma workstation response

times. The Saturn workstation response times were more uniformly distributed than the

Norma workstation. We conjectured that JavaSpaces service was trying to service both

clients equally and as a result of this, there was an upward trend in the response times of

the Norma workstation going up to around 25 ms. Note that the Saturn workstation

140

120 -

100 -

80 -

*: % * ; *#***

0 50 100 150 200 250 300 350 400 450 500
Test Case

 77

response times starts from 25 – 30 ms, and then goes down to 18 ms while the Norma

workstation response times starts from 14 ms and then goes up to 20 ms. At the end of

diagrams, we can see that each client response times are around 25 ms and they are tend

to be remain the same. As mentioned, both clients ran concurrently and so we cannot

predict the order they contact to the JavaSpaces server. We conjectured that when we

started the experiment, the client on the Norma workstation contacted the JavaSpaces

server before the client on the Saturn workstation. As a result of this, the first attempts of

the Norma workstation had relatively lower response times than those of the Saturn

workstation. When JavaSpaces server noticed that two different clients were trying to use

write service, it started to equally service to both clients. As a result of this, response

times of the Norma workstation tended to go upward while the Saturn workstation

response times tended to go downward.

We may also argue that the reason for the upward trend may be the JavaSpaces

write service. When a client wants to write a new Entry to JavaSpaces, JavaSpaces must

allocate new memory space for the Entry object. JavaSpaces places each write attempt in

a queue if it cannot process them at the moment. Concurrent or high load on JavaSpaces

may cause this unexpected upward trend as a result of this queuing.

8. Experiment 8

The purpose of this experiment was to test the performance of JavaSpaces service

under relatively higher loads. We tested the write service of JavaSpaces in this

experiment. We used three clients, each running on a different machine to increase the

load.

Three clients, created by the test programs, one on the Norma workstation, one on

the Saturn workstation, and one on the Moon workstation, contacted the JavaSpaces

server, which was running on Turtle1. All clients attempted to write an entry 500 times to

the JavaSpaces at the same time. There were no other applications running on Turtle1 and

other machines used in this experiment (except the JavaSpaces server and other system

tasks).

 78

The charts in Figures 6.9a, b, and c show the response times of the JavaSpaces

server for each write attempt for the clients on the Norma, Saturn, and Moon

workstations.

Figure 6.9a Response Time Diagram of Client on the Norma in Experiment 8

140

120 -

100 -

80 -

40 -

20 -

*: , :**:*: *
: * : : *

*: * *:* *

*■■-

* * ■ *

0 50 100 150 200 250 300 350 400 450 500
Test Case

 79

Figure 6.9b Response Time Diagram of Client on the Saturn in Experiment 8

150

100 -

E 4-

M
C o
W
IT

:■*

50 -

* : *

...;*

*: * *

*: * ; **■■ *

■*—

0 50 100 150 200 250 300 350 400 450 500
Test Case

 80

Figure 6.9c Response Time Diagram of Client on the Moon in Experiment 8

The response times of all clients were similar to each other, and uniformly

distributed. This means that the JavaSpaces service responded to each client equally. It is

also important to observe that under relatively high load (three concurrent clients), the

average response time of the JavaSpaces service is very low (around 20 ms). We

conjectured that JavaSpaces write service was not affected from the increasing load. Note

that the response time diagram of all clients had an upward trend. We conjectured that the

reason was the same as that of experiment 7.

9. Experiment 9

This experiment was the same as the experiment 8 except that we tested the read

service instead of the write service of JavaSpaces. We used three clients, so the load on

JavaSpaces was high.

120

0 50 100 150 200 250 300
Test Case

350 400 450 500

 81

Three clients created by the test programs, one on the Norma workstation, one on

the Saturn workstation, and one on the Moon contacted the JavaSpaces server, which was

running on Turtle1. All clients attempted to read an entry 500 times from JavaSpaces at

the same time. There were no other applications running on Turtle1 and the other

machines (except the JavaSpaces server and other system tasks).

The charts in Figures 6.10a, b, and c show the response times of the JavaSpaces

server for each read attempt for the clients on the Norma, Saturn, and Moon workstations.

Figure 6.10a Response Time Diagram of Client on the Norma in Experiment 9

450

400 -

200 250 300
Test Case

500

 82

Figure 6.10b Response Time Diagram of Client on the Saturn in Experiment 9

 83

Figure 6.10c Response Time Diagram of Client on the Moon in Experiment 9

The result of this experiment was similar to the result of the experiment 8. We

observed that all clients had a similar response times and that the client on the Moon

workstation had relatively shorter response times. Another important observation was

that the overall response times for the read service in this experiment was shorter than the

write service in experiment 8.

We did not observe the upward trend in experiment 7 and 8 in this experiment

even though that this experiment’s scenario was same as those of experiment 7 and 8

(different client running concurrently on different machines). We conjecture that the

reason of this was the read service. JavaSpaces does not allocate new memory space to

process the read services. It only creates a new copy of an existing Entry object in the

space (if there is an matching Entry object). We had concluded two different reasons for

this unexpected upward trend in experiment 7. The observation we made for this

80

70 -

60 -

SO -

30 -

 84

experiment strengthens our second conclusion. The reason for this upward trend may be

the implementation of the JavaSpaces write and read services. As mentioned, JavaSpaces

must allocate new memory for each write service but it does not need to allocate new

memory space to implement read service and so it does not introduce an overhead.

10. Experiment 10

The goal of this experiment was to test the performance of JavaSpaces write

service for a local client. A second, non-local client was used to increase the load on

JavaSpaces.

Two clients created by the test programs, one on Turtle1 and one on the Sun58

workstation, contacted the JavaSpaces server, which was running on Turtle1. The clients

attempted to write an entry 500 times to JavaSpaces at the same time. There were no

other applications running on the Turtle1 and Sun58 workstations (except the JavaSpaces

server and other system tasks).

The charts in Figures 6.11a, and b show the response times of the JavaSpaces

server for each write attempt for both clients.

 85

Figure 6.11a Response Time Diagram of Client on the Turtle1 in Experiment 10

50

45

40

35

 *■ * * *■#-

I30

£
^25
•/>
c

120
in

15

10*

5

#■■■■■■*. ■.*.—.■■.■*—■-#".■:* *■-■■*■■■■#

-*-■■■*—#■■■:-■■■#■

&#+* .*,

 86

Figure 6.11b Response Time Diagram of Client on the Sun58 in Experiment 10

 We observed that for the local client, response times of the JavaSpaces server

were often ~0 ms. We observed a periodic change in response times between ~0 and 10

ms. The reason for this was that both the local client and the JavaSpaces service

competed for the same CPU. They used the CPU periodically because they each had the

same priority. There were no other applications running on Turtle1 during the

experiment. Also, we observed some surprisingly longer response times (~50 ms) for the

non- local client. For the non- local client, the response times were similar to that of

previous experiments conducted using Sun58 workstation. There was an unexpected

scattering between attempts 50 and 150 in the response times for the non- local client.

Because the Sun58 workstation and Turtle1 were isolated from the rest of the network,

we conjecture that the reason for this scattering might be the delay introduced by the

operating system of the Sun58 workstation.

350

 87

11. Experiment 11

This experiment was conducted to measure the average response time of the

JavaSpaces read service for a local client. We also added a second, non- local client on

Sun58 workstation, to increase the load on JavaSpaces.

Two clients created by the test programs, one on Turtle1 and one on the Sun58

workstation, contacted the JavaSpaces server, which was running on Turtle1. The clients

attempted to read an entry 500 times from JavaSpaces at the same time. There were no

other applications running on the Turtle1 and Sun58 workstations (except the JavaSpaces

server and other system tasks).

The charts in Figures 6.12a, and b show the response times of the JavaSpaces

server for each read attempt for the clients on the Turtle1 and Sun58 workstations.

Figure 6.12a Response Time Diagram of Client on the Turtle1 in Experiment 11

50 -« r 1 1 1 —j —i j ~~1 1

45 - ■■ ■•— ■■;

40 - j- -*■■■ • •■:■■*■ :■■■■

35 ■■'• >

^^_ j
g30 — - ■■:■■■■*■■; -*:■■■

\—s
ay
E
^25
C

1»
:

 ■■■■■ ■■■■: —; '-

15 ;■■ ■\ ',--

in» :■ -(Mttl i y

5

0-
50 100 150 200 250 300

Test Case
350 400 450 500

 88

Figure 6.12b Response Time Diagram of Client on the Sun58 in Experiment 11

 The results of this experiment were similar to the results of experiment 10. We

observed a periodical switch between ~0 and 10 ms in response times of the local client.

The second, non- local client, which ran on the Sun58 workstation, had similar response

times as those in previous experiments conducted with the Sun58 workstation.

12. Experiment 12

The purpose of this experiment was to test the performance of JavaSpaces write

service under relatively higher loads. We also aimed to observe the relative response

times of the clients running concurrently on the same machines. We used four clients and

two machines for this experiment. We ran two clients concurrently on each machine to

increase the load on JavaSpaces.

250

 89

Four clients created by the test programs, two on Turtle1 and two on the Sun58

workstation, contacted the JavaSpaces server, which was running on Turtle1. Each client

attempted to write an entry 500 times to JavaSpaces at the same time. There were no

other applications running on the Turtle1 and Sun58 workstations (except the JavaSpaces

server and other system tasks).

The charts in Figures 6.13a, b, c, and d show the response times of the JavaSpaces

server for each read attempt for the clients on the Turtle1 and Sun58 workstations.

Figure 6.13a Response Time Diagram of first Client on the Turtle1 in Experiment

12

140

120 -

100 -

80 -

■*:■

40 -

20 - * :•*• ■■*■■"■**■ ■*■ ***■ ■ # ■

;*.

*

-*■■■■: #■■- * ■; :■*■■■■

* * : * ;*

■*-■*;*■ ■ ■*■■■■& ': ■■■■*

 90

Figure 6.13b Response Time Diagram of second Client on the Turtle1 in

Experiment 12

3500

200 250 300
Test Case

 91

Figure 6.13c Response Time Diagram of first Client on the Sun58 in Experiment 12

1800

1600 -

 92

Figure 6.13d Response Time Diagram of second Client on the Sun58 in Experiment

12

The results were similar to the previous experiments conducted with Turtle1 and

Sun58 workstation. An important observation was that there were some unexpectedly

high response times for both machines (e.g. 120 ms on Turtle1 client 1, 3500 ms on

Turtle1 client 2, 1600 ms on Sun58 client 1, and 2000 ms on Sun58 client2). We

conjecture that the reason for this was the relatively higher load on the JavaSpaces

service.

13. Experiment 13

This experiment was similar to experiment 12 except that we used the read

service instead of write service of JavaSpaces. Our purpose was to test the performance

of the JavaSpaces for the read service under relatively the highest load.

2500

2000 -

g 1500|-

HI w
c o
&1000
in

500 -

W»%**W«Mi«MWI»«»;
200 250 300

Test Case
350 400 450 500

 93

Four clients created by the test programs, two on Turtle1 and two on the Sun58

workstation, contacted the JavaSpaces server, which was running on Turtle1. Each client

attempted to read an entry 500 times from JavaSpaces at the same time. There were no

other applications running on the Turtle1 and Sun58 workstations (except the JavaSpaces

server and other system tasks).

The charts in Figures 6.14a, b, c, and d show the response times of the JavaSpaces

server for each read attempt for the client s on the Turtle1, and Sun58 workstations.

Figure 6.14a Response Time Diagram of first Client on the Turtle1 in Experiment
13

 94

Figure 6.14b Response Time Diagram of second Client on the Turtle1 in
Experiment 13

6000

5000 -

4000 -

3000 -

o
■->

ir.
2000 -

1000 -

200 250
Test Case

 95

Figure 6.14c Response Time Diagram of first Client on the Sun58 in Experiment 13

250

 96

Figure 6.14d Response Time Diagram of second Client on the Sun58 in Experiment
13

The response times were similar to the experiment 12. We also observed that for

each client, there was an unexpectedly high response time similar to that of experiment

12. We conjecture that this was the result of the relatively higher load on the JavaSpaces.

We might conclude that these unexpectedly high response times were the result of

congestion in the underlying network; but, the similar behavior of the clients for both

experiment 12 and 13 and isolation of the Turtle1 and Sun58 workstations from the rest

of the network confirms our conclusion about the overhead introduced by JavaSpaces.

C. RESULTS

The data statistics obtained in the experiments are summarized in Table 7.2. In

this table, we summarized the minimum/maximum, mean, median, standard deviation

2000

1800 I-

1600 -

1400 -

gl200
■I.
E
^ 10001-

| 800
ir.

600 -

400 -

2Q0:-

0

* : *

liiiÜhwIjifcMiiiii £ml
50 100 150 200 250 300

Test Case
350 400 450 500

 97

and range between the minimum and maximum response times obtained in the

experiments.

Experiment Machine Min (ms) Max (ms)
First Res.

Time (ms)
Mean (ms)

Std.Dev.

(ms)
Range (ms) Service

1 Sun58 36 456 456 58.63 40.14 420 write

2 Sun58 36 592 592 76.08 56.44 556 write

2 Sun58 36 1970 366 61.12 91.22 1934 write

3 Sun58 33 228 80 39.58 20.32 195 read

4 Sun58 35 232 185 42.32 20.83 197 read

4 Sun58 34 322 322 45.70 23.19 288 read

5 Norma 11 108 108 24.58 12.84 97 write

6 Norma 11 81 80 14.34 5.99 70 read

7 Norma 10 105 97 21.26 14.55 95 write

7 Saturn 11 139 95 25.55 12.05 128 write

8 Norma 10 132 68 21.30 15.26 122 write

8 Saturn 10 142 80 22.08 15.41 132 write

8 Moon 8 105 73 18.37 7.40 97 write

9 Norma 12 412 43 14.69 19.18 400 read

9 Saturn 12 86 79 14.99 6.36 74 read

9 Moon 10 75 11 11.99 4.76 65 read

10 Turtle1 ~0 50 10 5.72 8.00 50 write

10 Sun58 34 345 307 48.37 31.19 311 write

11 Turtle1 ~0 50 10 4.21 5.98 50 read

11 Sun58 32 241 229 37.57 18.38 209 read

12 Turtle1 ~0 121 10 6.31 11.36 121 write

12 Turtle1 ~0 3475 10 21.87 18.59 3475 write

12 Sun58 38 1680 316 69.90 82.61 1642 write

12 Sun58 35 2043 381 65.65 96.52 2008 write

13 Turtle1 ~0 41 30 5.15 6.04 41 read

13 Turtle1 ~0 5087 10 15.40 227.3 5087 read

13 Sun58 35 228 228 42.19 16.12 193 read

13 Sun58 34 1919 180 46.44 87.28 1885 read

Table 6.2 Data Statistics of Experiments

As seen in Table 7.2, we observed that for all experiments, first attempts for

write/read services have a relatively longer response time than the average response time.

 98

Second client on Turtle1 in experiment 13 might be thought as an exception for our

observation. Note that this client had a worst-case response time of 5000 ms, and the

response time of its first attempt would have been longer than the average if we excluded

the worst-case data point from the average response time computation. Because of this,

we did not conclude that this client was an exception for our observation. As mentioned

in experiment 1, the reason is that JavaSpaces logs each contact in a file. This registration

process makes first attempts for the services relatively longer. As a result of this

observation, we implemented the network buffers so that when they are created, they

write an entry to JavaSpaces to complete this registration process.

Another important observation was an upward trend in the response time

diagrams for experiments 7 and 8. We conjectured that this might be the result of

overhead introduced by memory allocation process in JavaSpaces write service when we

have concurrent clients and high loads. The rationale for this conclusion was that we had

no upward trend in experiment 9. Experiment 9 was similar to experiment 7 and 8 except

that we tested the performance of JavaSpaces read service. Hence, data are promptly

removed from the JavaSpaces by the destination network buffer in our implementation.

We observed that the read service has a relatively shorter response time than the

write service. As mentioned, we conjectured that read service takes a sorter time than the

write service because JavaSpaces must allocate a new memory space for each write

service. As seen in Table 7.2, we had a few unexpectedly longer response times such as

1970 ms in experiment 2. We conjectured that this was the result of delay introduced by

the operating system or overhead introduced by JavaSpaces. But we also had longer

response times such as 2043 ms, 3475 ms, and 5087 ms., which all occurred in the

experiments 12 and 13. The purpose of the experiments 12 and 13 was to test the

performance of JavaSpaces under higher loads. Because of this we conjectured that these

unexpectedly higher response times were the result of the higher load on the JavaSpaces

instead of network congestion or delay introduced by operating system.

The Sun58 workstation has the slowest CPU (40 Mhz) among the machines we

used in our experiments. So, we found that the highest response times were observed for

clients running on this machine. The Sun58 increases the average response time for both

 99

write/read services. The average response time we obtained for write service was 36.45

ms and 25.73 ms for read service. If we exclude the Sun58 response times, then we

obtain an 18.56 ms average response time for write service and 11.53 ms for the read

service. These values are very promising but the presence of unexpectedly high response

times introduced by the unpredictable underlying network, delays introduced by

operating system and overhead introduced by JavaSpaces prevent us from concluding

that JavaSpaces are ideal for distributed real-time systems. As seen in the Table 7.2, the

standard deviation of the response times is very high. Even though we have an average

response time in tens of the milliseconds, these high standard deviations mean that the

performance of JavaSpaces is highly unpredictable. Because predictability is an

important requirement of real-time systems we cannot rely on JavaSpaces to provide that

predictability. But, we can conclude that JavaSpaces has an average response time on the

order of tens of the milliseconds and we can use JavaSpaces for distributed “soft” real-

time systems, which require an average performance.

 100

THIS PAGE INTENTIONALLY LEFT BLANK

 101

VII. CONCLUSION AND FUTURE WORKS

A. SUMMARY

This thesis proposes a proxy-based network buffer technique to be used as an

inter-process communication layer and proposes a basic program structure for the

Distributed Computer Aided Prototyping System (DCAPS) to automatically generate

code for user-defined distributed real-time systems prototypes specified in PSDL for a

given target platform.

The proxy-based network buffers provide the inter-process communication in a

distributed heterogeneous environment. They act as if they are local buffers and shield

the implementation and network operation details from the developers. They are built on

Jini/JavaSpaces infrastructure to simplify the tasks of building and maintaining reliable

distributed systems. We considered practical network issues such as transmission delay,

loss of messages, and synchronization in the absence of a global clock. We have used

JavaSpaces as a global clock to synchronize the distributed applications and as a

repository for information exchange.

We have also found that any scheduling algorithm for a distributed real-time

system must account for the CPU usage of inter-process communication operations.

Inter-process communication takes relatively longer time than local operations. This

relatively longer time consists of the time spent in the local CPU to initiate the network

operations and the time spent in the network itself. This usage of CPU affects the

scheduling of operators in the local CPU and becomes an important issue in finding a

feasible schedule for a given distributed real-time system prototype specified in PSDL for

a given target platform.

We have conducted several experiments to measure the response time of

JavaSpaces. Results show that the latencies are in the order of milliseconds. We

conjectured that without the support for real-time in underlying network and operating

system, JavaSpaces are not sufficient to meet the requirements of a distributed real-time

system because of the unpredictable nature of the network delays, delays introduced by

 102

operating system and overhead introduced by JavaSpaces itself. We also applied a proxy-

based network buffer technique to a sample prototype specified in PSDL for a given

target platform. Our experiments showed that JavaSpaces provides an easy API to build

distributed applications and it is only good for “soft” real-time systems because of its

good average performance.

B. FUTURE WORK

This thesis provides an initial effort in research of using formal models and

scheduling algorithms to build tools for automatically generating code for distributed

real-time systems. We have provided a technique to be used in inter-process

communications and investigated the effects of inter-process communications in the

scheduling problem of distributed real-time systems. Improvements and additional

research are needed in the following areas:

• Automatic Generation of Code:

The primary benefit of any code generator is to reduce the amount of

repetitive code that must be produced, thus saving time in the development

cycle [RWJ01]. By using program structure proposed in this thesis, a code

generator can be developed to automatically generate code for user-

defined distributed real-time systems prototypes and integrated to the

current DCAPS environment. Researches into the automatic generation

code methods are recommended to improve current DCAPS.

• Partition of PSDL Graphs:

It is difficult yet and important to decide which tasks will be executed on

which processors in a distributed system. The partition of operators is an

important issue for distributed real- time system prototypes specified in

PSDL. An automated tool can be developed to partition PSDL graphs

 103

across given target platforms. The output of this tool can then be passed to

the generator to automatically generate the code for these prototypes.

Scheduling algorithms for these tasks is another area for research. Static

and dynamic scheduling algorithms can be researched and integrated in

the current DCAPS.

• Modification to the current PSDL Editor:

The current implementation of the PSDL Editor is not adequate for

specifying distributed real-time systems. As we proposed in this thesis, the

current PSDL model must be modified so that users may define different

latencies for streams with the same identity but with different

producers/consumers. The PSDL Editor must also automatically initialize

unspecified latencies to default latency for each stream.

• Load Balancing:

Load balancing is an important issue in building distributed systems.

There are several different rationales and mechanisms employed for load

balancing. Research into the relative strengths and weaknesses of these

approaches are recommended to improve current DCAPS. Work done by

Lap-Sun Cheung and Yu-Kwong Kwok [CAK01] offers a fuzzy decision

based approach. In their work, they compare three different approaches,

namely, JavaSpaces based, request redirection based, and fuzzy decision

based approaches and conclude that the fuzzy decision based approach is

the most promising one for load balancing.

C. CONCLUDING REMARKS

Our work demonstrates that we can use the JavaSpaces technology in the

communication layer of the DCAPS for distributed soft real-time systems. We also argue

 104

that JavaSpaces does not solve the global clock problem efficiently. The unpredictable

latencies introduced by network make it difficult to synchronize the distributed

applications using JavaSpaces. We also found and pointed out the deficiencies that must

be improved for DCAPS (e.g., PSDL Editor modifications) to be a promising solution to

the problems related to the development of distributed real-time system prototypes. The

most emergent tool needed for current DCAPS is a distributed scheduler and translator.

 105

APPENDIX A. JAVASPACES API

package net.jini.space;

public interface JavaSpace {

public final long NO_WAIT = 0; // do not wait

Lease write (Entry e, Transaction txn, long lease)

 throws RemoteException, TransactionException;

Entry read (Entry tmpl, Transaction txn, long timeout)

throws RemoteException,

 TransactionException,

UnusableEntryException,
InterruptedException;

Entry readIfExists (Entry tmpl, Transaction txn, long timeout)

throws RemoteException,

 TransactionException,

 UnusableEntryException,

 InterruptedException;

Entry take (Entry tmpl, Transaction txn, long timeout)

throws RemoteException,

 TransactionException,

 UnusableEntryException,

 InterruptedException;

Entry takeIfExists (Entry tmpl, Transaction txn, long timeout)

throws RemoteException,

 TransactionException,

 106

 UnusableEntryException,

 InterruptedException;

 EntryRegistration notify (Entry tmpl,

 Transaction txn,

 RemoteEventListener l,

 long lease,

 MarshalledObject obj)

 throws RemoteException, TransactionException;

 Entry snapshot (Entry e) throws RemoteException;

} // end of JavaSpace interface

 107

APPENDIX B. IMPLEMENTATION CODE

A. COMPUTATION UNIT ONE

/**

 * Title: ProcessorOne class

 * Description: This class is the implementation of applicatin part

 * for processor one of a distributed application

 * Company: NPGS

 * @author Tolga DEMIRTAS

 * @version 1.0

 */

package dcapsone;

import spacediscovery.Discovery;

import StartEntry;

import NetworkDoubleSampledBuffer;

import NetworkDoubleFIFOBuffer;

import localbuffer.*;

import net.jini.space.JavaSpace;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.RemoteEventListener;

import java.rmi.RMISecurityManager;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.RemoteException;

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

 108

public class ProcessorOne {

 // JavaSpace for network communications

 private JavaSpace javaSpace;

 // network stream buffers

 private NetworkDoubleSampledBuffer temperature_GUI;

 private NetworkDoubleSampledBuffer valve_adjustment_GUI;

 private NetworkDoubleSampledBuffer fuel_GUI;

 private NetworkDoubleFIFOBuffer valve_adjustment_Valve_Control;

 // network state streams

 private NetworkDoubleSampledBuffer valve_state_Monitor_Environment;

 // local state stream buffers

 private DoubleStateStreamBuffer valve_state_GUI;

 private DoubleStateStreamBuffer valve_state_Valve_Control;

 // Operator instances

 private Valve_Control valve_control;

 private GUI gui;

 // period of harmonic block

 private long period;

 // stream variables for GUI operator

 private Double temperatureGUI;

 private Double valve_adjustmentGUI;

 private Double fuelGUI;

 private Double valve_stateGUI;

 109

 // stream variables for Valve_Control operator

 private Double valve_adjustmentVC;

 private Double valve_stateVC;

 // timestamp for harmonic block

 private long beginning;

 private long last;

 // inner class to listen start notification

 class Listener extends UnicastRemoteObject implements RemoteEventListener {

 /*

 * Default constructor

 */

 public Listener() throws RemoteException {

 } // end of default constructor

 /*

 * This method is notified by the JavaSpaces when a new message is written

 */

 public void notify(RemoteEvent ev) {

 //System.out.println("Starting new period");

 // we got the start notification, start the application driver thread

 start();

 } // end of notify method

 } // end of inner class Listener

 110

 // operator implementations as inner classes

 class Valve_Control {//implements Runnable {

 public Valve_Control() {

 } // end of inner class Temperature_Control constructor

 private void valve_control() {

double state = valve_stateVC.doubleValue() + valve_adjustmentVC.doubleValue();

 if (state < 0) {

 valve_stateVC = new Double(0);

 } else if (state > 1) {

 valve_stateVC = new Double(1);

 } else {

 valve_stateVC = new Double(state);

 } // end of if else

 } // end of valve_control

 } // end of inner class Temperature_Control

 class GUI extends JFrame {

 // GUI elements

 JLabel space;

 JLabel info;

 JLabel temp_label;

 JLabel valve_adjust_label;

 JLabel fuel_label;

 JLabel valve_state_label;

 Font f = new Font("", 1, 16);

 Color red = Color.red;

 Color green = Color.green;

 Color blue = Color.blue;

 111

 public GUI() {

 super("Monitor");

 setSize(500, 500);

 setLocation(200, 200);

 setResizable(false);

 Container c = this.getContentPane();

 c.setLayout(new GridLayout(6, 1));

 if (javaSpace != null) {

 space = new JLabel("Connected");

 space.setForeground(blue);

 }

 else {

 space = new JLabel("Disconnected");

 space.setForeground(red);

 } // end of if else

 info = new JLabel(System.getProperty("java.rmi.server.codebase"));

 info.setForeground(blue);

 temp_label = new JLabel("not available");

 temp_label.setForeground(green);

 valve_adjust_label = new JLabel("not available");

 valve_adjust_label.setForeground(green);

 fuel_label = new JLabel("not available");

 fuel_label.setForeground(green);

 valve_state_label = new JLabel("not available");

 valve_state_label.setForeground(green);

 // setting fonts

 space.setFont(f);

 info.setFont(f);

 temp_label.setFont(f);

 112

 valve_adjust_label.setFont(f);

 fuel_label.setFont(f);

 valve_state_label.setFont(f);

 // setting color and borders

 space.setBorder(BorderFactory.createTitledBorder("JavaSpace Status"));

 info.setBorder(BorderFactory.createTitledBorder("JavaSpace Server Codebase"));

 temp_label.setBorder(BorderFactory.createTitledBorder("Current Temperature
(F)"));

 valve_adjust_label.setBorder(BorderFactory.createTitledBorder("Current Valve
Adjustment (%)"));

 fuel_label.setBorder(BorderFactory.createTitledBorder("Remaining Fuel
(gallons)"));

 valve_state_label.setBorder(BorderFactory.createTitledBorder("Current Valve
State"));

 // adding labels

 c.add(space);

 c.add(info);

 c.add(temp_label);

 c.add(valve_adjust_label);

 c.add(fuel_label);

 c.add(valve_state_label);

 // window listener

 addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent e) {

 System.exit(0);

 } // end of windowClosing

 });

 setVisible(true);

 } // end of inner class GUI constructor

 113

 public void gui() {

 // updating GUI

 if (javaSpace == null) {

 space.setText("Disconnected");

 space.setForeground(red);

 } // end of if

 if (temperatureGUI == null) {

 //temp_label.setText("not available");

 temp_label.setForeground(green);

 }

 else {

 temp_label.setText(temperatureGUI.toString());

 if (temperatureGUI.doubleValue() < 70 || temperatureGUI.doubleValue() > 80) {

 temp_label.setForeground(red);

 } else {

 temp_label.setForeground(blue);

 } // end of if else

 } // end of if else

 if (valve_adjustmentGUI == null) {

 //valve_adjust_label.setText("not available");

 valve_adjust_label.setForeground(green);

 }

 else {

 valve_adjust_label.setText(valve_adjustmentGUI.toString());

 valve_adjust_label.setForeground(blue);

 } // end of if else

 114

 if (fuelGUI == null) {

 //fuel_label.setText("not available");

 fuel_label.setForeground(green);

 }

 else {

 if (fuelGUI.doubleValue() <= 0) {

 fuel_label.setText("NO FUEL, ENVIRONMENT CONTROL IS STOPPED");

 fuel_label.setForeground(red);

 } else if (fuelGUI.doubleValue() <= 0.3) {

 fuel_label.setText(fuelGUI.toString() + " WARNING: FUEL LEVEL IS TOO
LOW");

 fuel_label.setForeground(Color.yellow);

 } else {

 fuel_label.setText(fuelGUI.toString());

 fuel_label.setForeground(blue);

 } // end of if else

 } // end of if else

 if (valve_stateGUI == null) {

 //valve_state_label.setText("not available");

 valve_state_label.setForeground(green);

 }

 else {

 valve_state_label.setText(valve_stateGUI.toString());

 valve_state_label.setForeground(blue);

 } // end of if else

 } // end of gui

 } // end of inner class GUI

 115

// driver method, it is called when we got the start message from the main controller

 public void start() {

 new Thread(new Runnable() {

 public void run() {

 try {

 beginning = System.currentTimeMillis();

 // sleep for the first 1700 ms

 Thread.sleep(1700);

 // check for newData

 if (valve_adjustment_Valve_Control.newData()) {

 // time to fire valve control time critical op

 // reading from streams

 valve_adjustmentVC = new Double(valve_adjustment_Valve_Control.read());

 valve_stateVC = new Double(valve_state_Valve_Control.read());

 // firing operator

 valve_control.valve_control();

 // writing to the local streams

 valve_state_GUI.write(valve_stateVC.doubleValue());

 valve_state_Valve_Control.write(valve_stateVC.doubleValue());

 // check for period time

 if ((last = 1800 - (System.currentTimeMillis() - beginning)) < 0) {

 // timing error

 last = 0;

 System.out.println("Timing error in Valve_Control operator firing");

 } // end of it

 // writing to the netwok streams

 valve_state_Monitor_Environment.write(valve_stateVC.doubleValue());

 } // end of if

 116

 // sleep for max. latency

 Thread.sleep(last);

 // we can now fire the GUI non time critical operator

 // reading variables for GUI

 temperatureGUI = new Double(temperature_GUI.read());

 if (valve_adjustment_GUI.newData()) {

 valve_adjustmentGUI = new Double(valve_adjustment_GUI.read());

 } else {

 valve_adjustment_GUI = null;

 }

 if (fuel_GUI.newData()) {

 fuelGUI = new Double(fuel_GUI.read());

 } else {

 fuelGUI = null;

 }

 valve_stateGUI = new Double(valve_state_GUI.read());

 gui.gui();

 if ((last = period - (System.currentTimeMillis() - beginning)) < 0) {

 // timing error

 last = 0;

 System.out.println("Timing error in GUI operator");

 } // end of if;

 // sleep for the remaining of the period

 Thread.sleep(last);

 }

 117

 catch (InterruptedException e) {

 e.printStackTrace();

 } // end of try catch

 }

 }).start();

 } // end of start

 // constructor

 public ProcessorOne() {

 // initialization of JavaSpace

 if ((javaSpace =
Discovery.discoverJavaSpace(getJiniScheme(System.getProperty("java.rmi.server.codeb
ase")))) == null) {

 // no java space, warn the user and exit

 System.out.println("Couldn't find a JavaSpace! Exiting...");

 System.exit(0);

 }

 else {

 // initializations of network buffers

 temperature_GUI = new NetworkDoubleSampledBuffer("temperature_GUI",
javaSpace, 1100);

 valve_adjustment_GUI = new
NetworkDoubleSampledBuffer("valve_adjustment_GUI", javaSpace, 1100);

 fuel_GUI = new NetworkDoubleSampledBuffer("fuel_GUI", javaSpace, 1100);

 valve_adjustment_Valve_Control = new
NetworkDoubleFIFOBuffer("valve_adjustment_Valve_Control", javaSpace, 1000);

 // initializations of state streams

 valve_state_GUI = new DoubleStateStreamBuffer(0);

 valve_state_Valve_Control = new DoubleStateStreamBuffer(0);

 valve_state_Monitor_Environment = new NetworkDoubleSampledBuffer(0,
"valve_state_Monitor_Environment", javaSpace, 1100);

 118

 // activation of network streams which will be used to read

 temperature_GUI.setNotification();

 valve_adjustment_Valve_Control.setNotification();

 fuel_GUI.setNotification();

 valve_adjustment_GUI.setNotification();

 // initializations of operator instances

 valve_control = new Valve_Control();

 gui = new GUI();

 // period of harmonc block

 period = 3000;

 // registration to listen for start notification

 try {

 javaSpace.notify(new StartEntry(), null, new Listener(), Long.MAX_VALUE,
null);

 System.out.println("Waiting for start notification...");

 }

 catch (RemoteException e) {

 System.out.println("There is a problem with remote object, exiting");

 e.printStackTrace();

 System.exit(0);

 }

 catch (Exception e) {

 System.out.println("Unexpected exception, exiting");

 e.printStackTrace();

 System.exit(0);

 } // end of try catch

 } // end of if else

 } // end of ProcessorOne constructor

 119

 private String getJiniScheme(String s) {

 int last = s.lastIndexOf(':');

 return "jini://" + s.substring(7, last);

 } // end of getJiniScheme

 public static void main(String[] args) {

 // setting security file

 if (System.getSecurityManager() == null) {

 System.setSecurityManager(new RMISecurityManager());

 } // end of if

 ProcessorOne p = new ProcessorOne();

 } // end of main

} // end of ProcessorOne class

 120

THIS PAGE INTENTIONALLY LEFT BLANK

 121

B. COMPUTATION UNIT TWO

/**

 * Title: ProcessorTwo class

 * Description: This class is the implementation of applicatin part

 * for processor two of a distributed application

 * Company: NPGS

 * @author Tolga DEMIRTAS

 * @version 1.0

 */

package dcapstwo;

import spacediscovery.Discovery;

import StartEntry;

import NetworkDoubleFIFOBuffer;

import NetworkDoubleSampledBuffer;

import localbuffer.*;

import net.jini.space.JavaSpace;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.RemoteEventListener;

import java.rmi.RMISecurityManager;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.RemoteException;

public class ProcessorTwo {

 // JavaSpace for network communications

 private JavaSpace javaSpace;

 // local stream buffers

 private LocalDoubleSampledBuffer temperature_Temperature_Control;

 122

 // network stream buffers

 private NetworkDoubleSampledBuffer temperature_GUI;

 private NetworkDoubleSampledBuffer valve_adjustment_GUI;

 private NetworkDoubleSampledBuffer fuel_GUI;

 private NetworkDoubleFIFOBuffer valve_adjustment_Valve_Control;

 // network state streams

 private NetworkDoubleSampledBuffer valve_state_Monitor_Environment;

 // local state streams

 private DoubleStateStreamBuffer fuel_Temperature_Control;

 private DoubleStateStreamBuffer temperature_Monitor_Environment ;

 // Operator instances

 Temperature_Control temperature_control;

 Monitor_Environment monitor_environment;

 // period of harmonic block

 private long period;

 // stream variables for temperature_control operator

 private Double temperatureTC;

 private Double valve_adjustmentTC;

 private Double fuelTC;

 // stream variables for monitor environment operator

 private Double temperatureME;

 private Double valve_stateME;

 // timestamp for harmonic block

 private long beginning;

 123

 private long last;

 // inner class to listen start notification

 class Listener extends UnicastRemoteObject implements RemoteEventListener {

 /*

 * Default constructor

 */

 public Listener() throws RemoteException {

 } // end of default constructor

 /*

 * This method is notified by the JavaSpaces when a new message is written into the
JavaSpaces

 */

 public void notify(RemoteEvent ev) {

 //System.out.println("Starting new period");

 // we got the start notification, start the application

 start();

 } // end of notify method

 } // end of inner class Listener

 // operator implementations as inner classes

 class Temperature_Control {

 public Temperature_Control() {

 } // end of inner class Temperature_Control constructor

 124

 private void temperature_control() {

 double fu = fuelTC.doubleValue();

 if (fu > 0) {

 if (temperatureTC.doubleValue() < 70) {

 valve_adjustmentTC = new Double(-0.1);

 fuelTC = new Double(fu - 0.0001);

 } else if (temperatureTC.doubleValue() > 80) {

 valve_adjustmentTC = new Double(0.1);

 fuelTC = new Double(fu - 0.0001);

 } else {

 valve_adjustmentTC = new Double(0.00099);

 } // end of if else

 } else {

 // do nothing

 //no fuel

 } // end of if else

 } // end of temperature_control

 } // end of inner class Temperature_Control

 class Monitor_Environment {

 public Monitor_Environment() {

 } // end of inner class Monitor_Environment constructor

 private void monitor_environment() {

 temperatureME = new Double(temperatureME.doubleValue() + 0.1 -
valve_stateME.doubleValue());

 } // end of monitor_environment

 } // end of inner class Monitor_Environment

 125

 // driver method, it is called when we got the start message from the main controller

 public void start() {

 new Thread(new Runnable() {

 public void run() {

 try {

 beginning = System.currentTimeMillis();

 // reading variables for Monitor_Environment

 valve_stateME = new Double(valve_state_Monitor_Environment.read());

 temperatureME = new Double(temperature_Monitor_Environment.read());

 // firing Monitor_Environment operator

 monitor_environment.monitor_environment();

 // writing to local streams

 temperature_Monitor_Environment.write(temperatureME.doubleValue());

 temperature_Temperature_Control.write(temperatureME.doubleValue());

 if ((last = 100 - (System.currentTimeMillis() - beginning)) < 0) {

 // timing error

 last = 0;

 System.out.println("Timing error in monitor environment operator");

 } // end of if

 // writing to network streams

 temperature_GUI.write(temperatureME.doubleValue());

 Thread.sleep(last);

 if (temperature_Temperature_Control.newData()) {

 // time for firing of temperature control operator

 126

 // reading from streams

 temperatureTC = new Double(temperature_Temperature_Control.read());

 fuelTC = new Double(fuel_Temperature_Control.read());

 if (temperatureTC == null || fuelTC == null) {

 // reading error

 System.out.println("Stream reading error in temperature control operator");

 } // end of if

 // firing operator

 temperature_control.temperature_control();

 // writing to the local stream

 fuel_Temperature_Control.write(fuelTC.doubleValue());

 // time check

 if ((System.currentTimeMillis() - beginning) > 700) {

 // timing error

 System.out.println("Timing error in temperature control operator");

 } // end of if

 // writing to the network streams

 if (valve_adjustmentTC.doubleValue() > 0.01 ||
valve_adjustmentTC.doubleValue() < - 0.01) {

valve_adjustment_Valve_Control.write(valve_adjustmentTC.doub leValue());

 } // end of if

 valve_adjustment_GUI.write(valve_adjustmentTC.doubleValue());

 fuel_GUI.write(fuelTC.doubleValue());

 } // end of if

 127

 // time check

 if ((last = period - (System.currentTimeMillis() - beginning)) < 0) {

 // timing error

 last = 0;

 System.out.println("Timing error in temperature control operator");

 } // end of if

 // sleep for the rest of the period

 Thread.sleep(last);

 }

 catch (InterruptedException e) {

 e.printStackTrace();

 } // end of try catch

 }

 }).start();

 } // end of start

 public ProcessorTwo() {

 // initialization of JavaSpace

 if ((javaSpace =
Discovery.discoverJavaSpace(getJiniScheme(System.getProperty("java.rmi.server.codeb
ase")))) == null) {

 // no java space, warn the user and exit

 System.out.println("Couldn't find a JavaSpace! Exiting...");

 System.exit(0);

 }

 else {

 // initializations of streams

 temperature_Temperature_Control = new LocalDoubleSampledBuffer();

 128

 temperature_GUI = new NetworkDoubleSampledBuffer("temperature_GUI",
javaSpace, 1100);

 valve_adjustment_GUI = new
NetworkDoubleSampledBuffer("valve_adjustment_GUI", javaSpace, 1100);

 fuel_GUI = new NetworkDoubleSampledBuffer("fuel_GUI", javaSpace, 1100);

 valve_adjustment_Valve_Control = new
NetworkDoubleFIFOBuffer("valve_adjustment_Valve_Control", javaSpace, 1000);

 valve_state_Monitor_Environment = new NetworkDoubleSampledBuffer(0,
"valve_state_Monitor_Environment", javaSpace, 1100);

 fuel_Temperature_Control = new DoubleStateStreamBuffer(1);

 temperature_Monitor_Environment = new DoubleStateStreamBuffer(75);

 // activation of network streams which will be used to read

 valve_state_Monitor_Environment.setNotification();

 // initializations of operator instances

 temperature_control = new Temperature_Control();

 monitor_environment = new Monitor_Environment();

 // period of harmonic block

 period = 3000;

 // registration to listen for start notification

 try {

 javaSpace.notify(new StartEntry(), null, new Listener(), Long.MAX_VALUE,
null);

 System.out.println("Waiting for start notification...");

 }

 catch (RemoteException e) {

 System.out.println("There is a problem with remote object, exiting");

 e.printStackTrace();

 System.exit(0);

 }

 129

 catch (Exception e) {

 System.out.println("Unexpected exception, exiting");

 e.printStackTrace();

 System.exit(0);

 } // end of try catch

 } // end of if else

 } // end of constructor

 private String getJiniScheme(String s) {

 int last = s.lastIndexOf(':');

 return "jini://" + s.substring(7, last);

 } // end of getJiniScheme

 public static void main(String[] args) {

 // setting security file

 if (System.getSecurityManager() == null) {

 System.setSecurityManager(new RMISecurityManager());

 } // end of if

 ProcessorTwo p = new ProcessorTwo();

 } // end of main

} // end of ProcessorTwo class

 130

THIS PAGE INTENTIONALLY LEFT BLANK

 131

APPENDIX C. MASTER APPLICATION

/**

 * Title: Starter class

 * Description: To start distributed application by placing a start entry

 * into the JavaSpaces

 * Company: NPGS

 * @author Tolga DEMIRTAS

 * @version 1.0

 */

package starter;

import java.rmi.RMISecurityManager;

import net.jini.space.JavaSpace;

import spacediscovery.Discovery;

import StartEntry;

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class Starter extends JFrame {

 private String address;

 private JLabel labelOne;

 private JLabel labelTwo;

 private JLabel labelThree;

 private JLabel labelFour;

 private JTextField fieldOne;

 private JTextField fieldTwo;

 private JTextField fieldThree;

 132

 private JTextField fieldFour;

 private JLabel status;

 private JButton start = new JButton("Start");

 private long period;

 private StartEntry entry;

 public Starter() {

 super("Start");

 setSize(450, 250);

 setLocation(300, 150);

 setResizable(false);

 entry = new StartEntry();

 labelOne = new JLabel(" JavaSpace Server Codebase");

 labelOne.setBorder(BorderFactory.createEtchedBorder());

 labelOne.setForeground(Color.black);

 labelTwo = new JLabel(" Security File");

 labelTwo.setForeground(Color.black);

 labelTwo.setBorder(BorderFactory.createEtchedBorder());

 labelThree = new JLabel(" LCM (miliseconds)");

 labelThree.setForeground(Color.black);

 labelThree.setBorder(BorderFactory.createEtchedBorder());

 labelFour = new JLabel(" Status");

 labelFour.setForeground(Color.black);

 labelFour.setBorder(BorderFactory.createEtchedBorder());

 fieldFour = new JTextField("Waiting for start command...");

 start = new JButton("Start Distributed Application");

 fieldOne = new JTextField("http://131.120.8.41:8081/");

 fieldTwo = new JTextField("c:\\policy.all");

 fieldThree = new JTextField("500");

 133

 start.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 startApplication();

 }

 });

 Container c = getContentPane();

 c.setLayout(new GridLayout(5, 1));

 JPanel p1 = new JPanel(new GridLayout(1, 2));

 JPanel p2 = new JPanel(new GridLayout(1, 2));

 JPanel p3 = new JPanel(new GridLayout(1, 2));

 JPanel p4 = new JPanel(new GridLayout(1, 2));

 p1.add(labelOne);

 p1.add(fieldOne);

 p2.add(labelTwo);

 p2.add(fieldTwo);

 p3.add(labelThree);

 p3.add(fieldThree);

 p4.add(labelFour);

 p4.add(fieldFour);

 c.add(p1);

 c.add(p2);

 c.add(p3);

 c.add(p4);

 c.add(start);

 setVisible(true);

 addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent e) {

 System.exit(0);

 }

 });

 } // end of default constructor

 134

 private void startApplication() {

 fieldFour.setText("Trying to connect to the JavaSpace...");

 address = fieldOne.getText();

 try {

 period = Long.valueOf(fieldThree.getText()).longValue();

 }

 catch (NumberFormatException e) {

 e.printStackTrace();

 } // end of try catch

 System.setProperty("java.rmi.server.codebase", address);

 System.setProperty("java.security.policy", fieldTwo.getText());

 final JavaSpace space = Discovery.discoverJavaSpace(getJiniScheme(address));

 if (space == null) {

 fieldFour.setText("Couldn't connect to the JavaSpace...");

 }

 else {

 fieldFour.setText("Connected to the JavaSpace...");

 fieldFour.setText("Trying to start distributed application...");

 new Thread(new Runnable() {

 public void run() {

 try {

 while(true) {

 space.write(entry, null, 50000);

 Thread.sleep(period);

 } // end of while

 }

 135

 catch (Exception e) {

 e.printStackTrace();

 } // end of try catch

 } // end of run

 }).start();

 fieldFour.setText("Distributed application was started...");

 } // end of if else

 } // end of startApplication

 private String getJiniScheme(String s) {

 int last = s.lastIndexOf(':');

 return "jini://" + s.substring(7, last);

 } // end of getJiniScheme

 public static void main(String[] args) {

 if (System.getSecurityManager() == null) {

 System.setSecurityManager(new RMISecurityManager());

 }

 Starter s = new Starter();

 } // end of main

} // end of Starter class

 136

THIS PAGE INTENTIONALLY LEFT BLANK

 137

APPENDIX D. JAVASPACES DISCOVERY CLASS

/**

 * Title: Discovery class

 * Description: This class discovers a local jini lookup service

 * and registers to a JavaSpace

 * Company: NPGS

 * @author Tolga DEMIRTAS

 * @version 1.0

 */

package spacediscovery;

import net.jini.core.discovery.LookupLocator;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.space.JavaSpace;

import java.io.*;

import java.rmi.RemoteException;

import java.net.MalformedURLException;

public class Discovery {

 private static JavaSpace javaSpace;

 private static Class[] types = {JavaSpace.class};

 private static ServiceTemplate tmpl = new ServiceTemplate(null, types, null);

 138

 // This method finds the registrar of a lookup service

 private static ServiceRegistrar getRegistrar(String url)

 throws MalformedURLException, IOException, ClassNotFoundException {

 LookupLocator loc = new LookupLocator(url);

 return loc.getRegistrar();

 } // end of getRegistrar

 // this method finds the JavaSpaces

 private static void findJavaSpace(ServiceRegistrar reg) {

 if (javaSpace != null) {

 return;

 }

 else {

 try {

 javaSpace = (JavaSpace) reg.lookup(tmpl);

 if (javaSpace == null) {

 return;

 } // end of if

 }

 catch (RemoteException e) {

 e.printStackTrace();

 } // end of try catch

 } // end of if else

 } // end of findJavaSpace

 139

 // This method discovers and returns a JavaSpace. If it cannot find a

 // local JavaSpace returns a null reference

 public static JavaSpace discoverJavaSpace(String url) {

 try {

 findJavaSpace(getRegistrar(url));

 }

 catch (Exception e) {

 e.printStackTrace();

 } // end of try catch

 return javaSpace;

 } // end ofdiscoverJavaSpace

} // end of Discovery class

 140

THIS PAGE INTENTIONALLY LEFT BLANK

 141

APPENDIX E. NETWORK BUFFERS

A. SAMPLED STREAM NETWORK BUFFERS

1. String Type

/**

 * Title: NetworkStringSampledBuffer

 * Description: This class implements a Sampled buffer using JavaSpace for
String values

 * Company: NPGS

 * @author Tolga DEMIRTAS

 * @version 1.0

 */

import net.jini.core.entry.Entry;

import net.jini.space.JavaSpace;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.event.RemoteEvent;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.RemoteException;

import net.jini.core.lease.Lease;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.entry.UnusableEntryException;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

import java.io.*;

import tuplespace.entries.*;

 142

public class NetworkStringSampledBuffer {

 private JavaSpace space;

 private EntryString variable;

 private Entry tempOne;

 private Entry tempTwo;

 private Entry template;

 private String id;

 private long latency;

 private boolean newData;

 /*

 * Listener inner class for notifications

 */

 class EvtListener extends UnicastRemoteObject implements
RemoteEventListener {

 public EvtListener() throws RemoteException {

 } // end of EvtListener default constructor

 public void notify(RemoteEvent ev) {

 readFromSpace();

 } // end of notify

 } // end of EvtListener inner class

 143

 /*

 * Constructor

 */

 public NetworkStringSampledBuffer(String id, JavaSpace space, long latency) {

 this.space = space;

 this.id = id;

 this.latency = latency;

 try {

 this.template = this.space.snapshot(new EntryString(id));

 this.space.write(new EntryString(), null, 6000);

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 this.newData = false;

 } // end of constructor

 /*

 * Constructor for state stream mode

 */

 public NetworkStringSampledBuffer(String x, String id, JavaSpace space, long
latency) {

 this.variable = new EntryString(id, x);

 this.space = space;

 this.id = id;

 this.latency = latency;

 try {

 this.template = this.space.snapshot(new EntryString(id));

 this.space.write(new EntryString(), null, 6000);

 }

 144

 catch (Exception e) {

 e.printStackTrace();

 }

 this.newData = false;

 } // end of constructor

 //

 // public methods

 //

 /*

 * This method returns the current value

 */

 synchronized public String read() {

 newData = false;

 return variable.entryString.toString();

 } // end of read

 /*

 * This method writes the given value to the javaspace

 */

 synchronized public void write(String value) {

 EntryString entry = new EntryString(id, value);

 if (space != null) {

 try {

 space.write(entry, null, latency);

 }

 catch (RemoteException ex) {

 ex.printStackTrace();

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of if statement

 } // end of write

 145

 /*

 * This method returns the newData value

 */

 synchronized public boolean newData() {

 return newData;

 } // end of newData

 /*

 * This method is used to enable notification

 */

 public void setNotification() {

 try {

 EvtListener listener = new EvtListener();

 if (space != null) {

 space.notify(template, null, listener, Long.MAX_VALUE, null);

 } // end of if statement

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of setNotification

 146

 ///

 // private methods

 ///

 /*

 * This method is called by the notify method of EvtListener object

 * When called, it takes every object in the javaspace with predefined id

 */

 private void readFromSpace() {

 try {

 while((tempOne = space.takeIfExists(template, null,
JavaSpace.NO_WAIT)) != null) {

 tempTwo = tempOne;

 };

 if (tempTwo != null) {

 variable = (EntryString) tempTwo;

 newData = true;

 } // end of if statement

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of readFromSpace

} // end of NetworkStringSampledBuffer class

 147

2. Boolean Type

/**

 * Title: NetworkBooleanSampledBuffer

 * Description: This class implements a Sampled buffer using JavaSpace for Boolean
values

 * Company: NPGS

 * @author Tolga DEMIRTAS

 * @version 1.0

 */

import net.jini.core.entry.Entry;

import net.jini.space.JavaSpace;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.event.RemoteEvent;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.RemoteException;

import net.jini.core.lease.Lease;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.entry.UnusableEntryException;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

import java.io.*;

import tuplespace.entries.*;

 148

public class NetworkBooleanSampledBuffer {

 private JavaSpace space;

 private EntryBoolean variable;

 private Entry tempOne;

 private Entry tempTwo;

 private Entry template;

 private String id;

 private long latency;

 private boolean newData;

 /*

 * Listener inner class for notifications

 */

 class EvtListener extends UnicastRemoteObject implements RemoteEventListener {

 public EvtListener() throws RemoteException {

 } // end of EvtListener default constructor

 public void notify(RemoteEvent ev) {

 readFromSpace();

 } // end of notify

 } // end of EvtListener inner class

 149

 /*

 * Constructor

 */

 public NetworkBooleanSampledBuffer(String id, JavaSpace space, long latency) {

 this.space = space;

 this.id = id;

 this.latency = latency;

 try {

 this.template = this.space.snapshot(new EntryBoolean(id));

 this.space.write(new EntryBoolean(), null, 6000);

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 this.newData = false;

 } // end of constructor

 /*

 * Constructor for state stream mode

 */

 public NetworkBooleanSampledBuffer(boolean x, String id, JavaSpace space, long
latency) {

 this.variable = new EntryBoolean(id, x);

 this.space = space;

 this.id = id;

 this.latency = latency;

 try {

 this.template = this.space.snapshot(new EntryBoolean(id));

 this.space.write(new EntryBoolean(), null, 6000);

 }

 150

 catch (Exception e) {

 e.printStackTrace();

 }

 this.newData = false;

 } // end of constructor

 //

 // public methods

 //

 /*

 * This method returns the current value

 */

 synchronized public boolean read() {

 newData = false;

 return variable.entryBoolean.booleanValue();

 } // end of read

/*

 * This method writes the given value to the javaspace

 */

 synchronized public void write(boolean value) {

 EntryBoolean entry = new EntryBoolean(id, value);

 if (space != null) {

 try {

 space.write(entry, null, latency);

 }

 catch (RemoteException ex) {

 ex.printStackTrace();

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of if statement

 } // end of write

 151

 /*

 * This method returns the newData value

 */

 synchronized public boolean newData() {

 return newData;

 } // end of newData

 /*

 * This method is used to enable notification

 */

 public void setNotification() {

 try {

 EvtListener listener = new EvtListener();

 if (space != null) {

 space.notify(template, null, listener, Long.MAX_VALUE, null);

 } // end of if statement

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of setNotification

 152

 ///

 // private methods

 ///

 /*

 * This method is called by the notify method of EvtListener object

 * When called, it takes every object in the javaspace with predefined id

 */

 private void readFromSpace() {

 try {

 while((tempOne = space.takeIfExists(template, null, JavaSpace.NO_WAIT)) !=
null) {

 tempTwo = tempOne;

 };

 if (tempTwo != null) {

 variable = (EntryBoolean) tempTwo;

 newData = true;

 } // end of if statement

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of readFromSpace

} // end of NetworkBooleanSampledBuffer class

 153

3. Integer Type

/**

 * Title: NetworkIntegerSampledBuffer

 * Description: This class implements a Sampled buffer using JavaSpace for Integer
values

 * Company: NPGS

 * @author Tolga DEMIRTAS

 * @version 1.0

 */

import net.jini.core.entry.Entry;

import net.jini.space.JavaSpace;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.event.RemoteEvent;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.RemoteException;

import net.jini.core.lease.Lease;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.entry.UnusableEntryException;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

import java.io.*;

import tuplespace.entries.*;

 154

public class NetworkIntegerSampledBuffer {

 private JavaSpace space;

 private EntryInteger variable;

 private Entry tempOne;

 private Entry tempTwo;

 private Entry template;

 private String id;

 private long latency;

 private boolean newData;

 /*

 * Listener inner class for notifications

 */

 class EvtListener extends UnicastRemoteObject implements RemoteEventListener {

 public EvtListener() throws RemoteException {

 } // end of EvtListener default constructor

 public void notify(RemoteEvent ev) {

 readFromSpace();

 } // end of notify

 } // end of EvtListener inner class

 155

 /*

 * Constructor

 */

 public NetworkIntegerSampledBuffer(String id, JavaSpace space, long latency) {

 this.space = space;

 this.id = id;

 this.latency = latency;

 try {

 this.template = this.space.snapshot(new EntryInteger(id));

 this.space.write(new EntryInteger(), null, 6000);

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 this.newData = false;

 } // end of constructor

 /*

 * Constructor for state stream mode

 */

 public NetworkIntegerSampledBuffer(int x, String id, JavaSpace space, long latency) {

 this.variable = new EntryInteger(id, x);

 this.space = space;

 this.id = id;

 this.latency = latency;

 try {

 this.template = this.space.snapshot(new EntryInteger(id));

 this.space.write(new EntryInteger(), null, 6000);

 }

 156

 catch (Exception e) {

 e.printStackTrace();

 }

 this.newData = false;

 } // end of constructor

 //

 // public methods

 //

 /*

 * This method returns the current value

 */

 synchronized public int read() {

 newData = false;

 return variable.entryInteger.intValue();

 } // end of read

 /*

 * This method writes the given value to the javaspace

 */

 synchronized public void write(int value) {

 EntryInteger entry = new EntryInteger(id, value);

 if (space != null) {

 try {

 space.write(entry, null, latency);

 }

 catch (RemoteException ex) {

 ex.printStackTrace();

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of if statement

 } // end of write

 157

 /*

 * This method returns the newData value

 */

 synchronized public boolean newData() {

 return newData;

 } // end of newData

 /*

 * This method is used to enable notification

 */

 public void setNotification() {

 try {

 EvtListener listener = new EvtListener();

 if (space != null) {

 space.notify(template, null, listener, Long.MAX_VALUE, null);

 } // end of if statement

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of setNotification

 158

 ///

 // private methods

 ///

 /*

 * This method is called by the notify method of EvtListener object

 * When called, it takes every object in the javaspace with predefined id

 */

 private void readFromSpace() {

 try {

 while((tempOne = space.takeIfExists(template, null, JavaSpace.NO_WAIT)) !=
null) {

 tempTwo = tempOne;

 };

 if (tempTwo != null) {

 variable = (EntryInteger) tempTwo;

 newData = true;

 } // end of if statement

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of readFromSpace

} // end of NetworkIntegerSampledBuffer class

 159

4. Double Type

/**

 * Title: NetworkDoubleSampledBuffer

 * Description: This class implements a Sampled buffer using JavaSpace for double
values

 * Company: NPGS

 * @author Tolga DEMIRTAS

 * @version 1.0

 */

import net.jini.core.entry.Entry;

import net.jini.space.JavaSpace;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.event.RemoteEvent;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.RemoteException;

import net.jini.core.lease.Lease;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.entry.UnusableEntryException;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

import java.io.*;

import tuplespace.entries.*;

 160

public class NetworkDoubleSampledBuffer {

 private JavaSpace space;

 private EntryDouble variable;

 private Entry tempOne;

 private Entry tempTwo;

 private Entry template;

 private String id;

 private long latency;

 private boolean newData;

 /*

 * Listener inner class for notifications

 */

 class EvtListener extends UnicastRemoteObject implements RemoteEventListener {

 public EvtListener() throws RemoteException {

 } // end of EvtListener default constructor

 public void notify(RemoteEvent ev) {

 readFromSpace();

 } // end of notify

 } // end of EvtListener inner class

 161

 /*

 * Constructor

 */

 public NetworkDoubleSampledBuffer(String id, JavaSpace space, long latency) {

 this.space = space;

 this.id = id;

 this.latency = latency;

 try {

 this.template = this.space.snapshot(new EntryDouble(id));

 this.space.write(new EntryDouble(), null, 6000);

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 this.newData = false;

 } // end of constructor

 /*

 * Constructor for state stream mode

 */

 public NetworkDoubleSampledBuffer(double x, String id, JavaSpace space, long
latency) {

 this.variable = new EntryDouble(id, x);

 this.space = space;

 this.id = id;

 this.latency = latency;

 try {

 this.template = this.space.snapshot(new EntryDouble(id));

 this.space.write(new EntryDouble(), null, 6000);

 }

 162

 catch (Exception e) {

 e.printStackTrace();

 }

 this.newData = false;

 } // end of constructor

 //

 // public methods

 //

 /*

 * This method returns the current value

 */

 synchronized public double read() {

 newData = fa lse;

 return variable.entryDouble.doubleValue();

 } // end of read

 /*

 * This method writes the given value to the javaspace

 */

 synchronized public void write(double value) {

 EntryDouble entry = new EntryDouble(id, value);

 if (space != null) {

 try {

 space.write(entry, null, latency);

 }

 catch (RemoteException ex) {

 ex.printStackTrace();

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of if statement

 } // end of write

 163

 /*

 * This method returns the newData value

 */

 synchronized public boolean newData() {

 return newData;

 } // end of newData

 /*

 * This method is used to enable notification

 */

 public void setNotification() {

 try {

 EvtListener listener = new EvtListener();

 if (space != null) {

 space.notify(template, null, listener, Long.MAX_VALUE, null);

 } // end of if statement

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of setNotification

 164

 ///

 // private methods

 ///

 /*

 * This method is called by the notify method of EvtListener object

 * When called, it takes every object in the javaspace with predefined id

 */

 private void readFromSpace() {

 try {

 while((tempOne = space.takeIfExists(template, null, JavaSpace.NO_WAIT)) !=
null) {

 tempTwo = tempOne;

 };

 if (tempTwo != null) {

 variable = (EntryDouble) tempTwo;

 newData = true;

 } // end of if statement

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of readFromSpace

} // end of NetworkDoubleSampledBuffer class

 165

5. Float Type

/**

 * Title: NetworkFloatSampledBuffer

 * Description: This class implements a Sampled buffer using JavaSpace for Float values

 * Company: NPGS

 * @author Tolga DEMIRTAS

 * @version 1.0

 */

import net.jini.core.entry.Entry;

import net.jini.space.JavaSpace;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.event.RemoteEvent;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.RemoteException;

import net.jini.core.lease.Lease;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.entry.UnusableEntryException;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

import java.io.*;

import tuplespace.entries.*;

 166

public class NetworkFloatSampledBuffer {

 private JavaSpace space;

 private EntryFloat variable;

 private Entry tempOne;

 private Entry tempTwo;

 private Entry template;

 private String id;

 private long latency;

 private boolean newData;

 /*

 * Listener inner class for notifications

 */

 class EvtListener extends UnicastRemoteObject implements RemoteEventListener {

 public EvtListener() throws RemoteException {

 } // end of EvtListener default constructor

 public void notify(RemoteEvent ev) {

 readFromSpace();

 } // end of notify

 } // end of EvtListener inner class

 167

 /*

 * Constructor

 */

 public NetworkFloatSampledBuffer(String id, JavaSpace space, long latency) {

 this.space = space;

 this.id = id;

 this.latency = latency;

 try {

 this.template = this.space.snapshot(new EntryFloat(id));

 this.space.write(new EntryFloat(), null, 6000);

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 this.newData = false;

 } // end of constructor

 /*

 * Constructor for state stream mode

 */

 public NetworkFloatSampledBuffer(float x, String id, JavaSpace space, long latency) {

 this.variable = new EntryFloat(id, x);

 this.space = space;

 this.id = id;

 this.latency = latency;

 try {

 this.template = this.space.snapshot(new EntryFloat(id));

 this.space.write(new EntryFloat(), null, 6000);

 }

 168

catch (Exception e) {

 e.printStackTrace();

 }

 this.newData = false;

 } // end of constructor

 //

 // public methods

 //

 /*

 * This method returns the current value

 */

 synchronized public float read() {

 newData = false;

 return variable.entryFloat.floatValue();

 } // end of read

 /*

 * This method writes the given value to the javaspace

 */

 synchronized public void write(float value) {

 EntryFloat entry = new EntryFloat(id, value);

 if (space != null) {

 try {

 space.write(entry, null, latency);

 }

 catch (RemoteException ex) {

 ex.printStackTrace();

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of if statement

 } // end of write

 169

 /*

 * This method returns the newData value

 */

 synchronized public boolean newData() {

 return newData;

 } // end of newData

 /*

 * This method is used to enable notification

 */

 public void setNotification() {

 try {

 EvtListener listener = new EvtListener();

 if (space != null) {

 space.notify(template, null, listener, Long.MAX_VALUE, null);

 } // end of if statement

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of setNotification

 170

 ///

 // private methods

 ///

 /*

 * This method is called by the notify method of EvtListener object

 * When called, it takes every object in the javaspace with predefined id

 */

 private void readFromSpace() {

 try {

 while((tempOne = space.takeIfExists(template, null, JavaSpace.NO_WAIT)) !=
null) {

 tempTwo = tempOne;

 };

 if (tempTwo != null) {

 variable = (EntryFloat) tempTwo;

 newData = true;

 } // end of if statement

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of readFromSpace

} // end of NetworkFloatSampledBuffer class

 171

6. Long Type

/**

 * Title: NetworkLongSampledBuffer

 * Description: This class implements a Sampled buffer using JavaSpace for Long values

 * Company: NPGS

 * @author Tolga DEMIRTAS

 * @version 1.0

 */

import net.jini.core.entry.Entry;

import net.jini.space.JavaSpace;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.event.RemoteEvent;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.RemoteException;

import net.jini.core.lease.Lease;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.entry.UnusableEntryException;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

import java.io.*;

import tuplespace.entries.*;

 172

public class NetworkLongSampledBuffe r {

 private JavaSpace space;

 private EntryLong variable;

 private Entry tempOne;

 private Entry tempTwo;

 private Entry template;

 private String id;

 private long latency;

 private boolean newData;

 /*

 * Listener inner class for notifications

 */

 class EvtListener extends UnicastRemoteObject implements RemoteEventListener {

 public EvtListener() throws RemoteException {

 } // end of EvtListener default constructor

 public void notify(RemoteEvent ev) {

 readFromSpace();

 } // end of notify

 } // end of EvtListener inner class

 173

 /*

 * Constructor

 */

 public NetworkLongSampledBuffer(String id, JavaSpace space, long latency) {

 this.space = space;

 this.id = id;

 this.latency = latency;

 try {

 this.template = this.space.snapshot(new EntryLong(id));

 this.space.write(new EntryLong(), null, 6000);

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 this.newData = false;

 } // end of constructor

 /*

 * Constructor for state stream mode

 */

 public NetworkLongSampledBuffer(long x, String id, JavaSpace space, long latency) {

 this.variable = new EntryLong(id, x);

 this.space = space;

 this.id = id;

 this.latency = latency;

 try {

 this.template = this.space.snapshot(new EntryLong(id));

 this.space.write(new EntryLong(), null, 6000);

 }

 174

catch (Exception e) {

 e.printStackTrace();

 }

 this.newData = false;

 } // end of cons tructor

 //

 // public methods

 //

 /*

 * This method returns the current value

 */

 synchronized public long read() {

 newData = false;

 return variable.entryLong.longValue();

 } // end of read

 /*

 * This method writes the given value to the javaspace

 */

 synchronized public void write(long value) {

 EntryLong entry = new EntryLong(id, value);

 if (space != null) {

 try {

 space.write(entry, null, latency);

 }

 catch (RemoteException ex) {

 ex.printStackTrace();

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of if statement

 } // end of write

 175

 /*

 * This method returns the newData value

 */

 synchronized public boolean newData() {

 return newData;

 } // end of newData

 /*

 * This method is used to enable notification

 */

 public void setNotification() {

 try {

 EvtListener listener = new EvtListener();

 if (space != null) {

 space.notify(template, null, listener, Long.MAX_VALUE, null);

 } // end of if statement

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of setNotification

 176

 ///

 // private methods

 ///

 /*

 * This method is called by the notify method of EvtListener object

 * When called, it takes every object in the javaspace with predefined id

 */

 private void readFromSpace() {

 try {

 while((tempOne = space.takeIfExists(template, null, JavaSpace.NO_WAIT)) !=
null) {

 tempTwo = tempOne;

 };

 if (tempTwo != null) {

 variable = (EntryLong) tempTwo;

 newData = true;

 } // end of if statement

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of readFromSpace

} // end of NetworkLongSampledBuffer class

 177

7. HashMap Type

/**

 * Title: NetworkHashSampledBuffer

 * Description: This class implements a Sampled buffer using JavaSpace for Hashmap
values

 * Company: NPGS

 * @author Tolga DEMIRTAS

 * @version 1.0

 */

import net.jini.core.entry.Entry;

import net.jini.space.JavaSpace;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.event.RemoteEvent;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.RemoteException;

import net.jini.core.lease.Lease;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.entry.UnusableEntryException;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

import java.io.*;

import tuplespace.entries.*;

import java.util.HashMap;

 178

public class NetworkHashSampledBuffer {

 private JavaSpace space;

 private EntryHash variable;

 private Entry tempOne;

 private Entry tempTwo;

 private Entry template;

 private String id;

 private long latency;

 private boolean newData;

 /*

 * Listener inner class for notifications

 */

 class EvtListener extends UnicastRemoteObject implements RemoteEventListener {

 public EvtListener() throws RemoteException {

 } // end of EvtListener default constructor

 public void notify(RemoteEvent ev) {

 readFromSpace();

 } // end of notify

 } // end of EvtListener inner class

 179

 /*

 * Constructor

 */

 public NetworkHashSampledBuffer(String id, JavaSpace space, long latency) {

 this.space = space;

 this.id = id;

 this.latency = latency;

 try {

 this.template = this.space.snapshot(new EntryHash(id));

 this.space.write(new EntryHash(), null, 6000);

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 this.newData = false;

 } // end of constructor

 /*

 * Constructor for state stream mode

 */

 public NetworkHashSampledBuffer(HashMap x, String id, JavaSpace space, long
latency) {

 this.variable = new EntryHash(id, x);

 this.space = space;

 this.id = id;

 this.latency = latency;

 try {

 this.template = this.space.snapshot(new EntryHash(id));

 this.space.write(new EntryHash(), null, 6000);

 }

 180

 catch (Exception e) {

 e.printStackTrace();

 }

 this.newData = false;

 } // end of constructor

 //

 // public methods

 //

 /*

 * This method returns the current value

 */

 synchronized public HashMap read() {

 newData = false;

 return variable.getHashMap();

 } // end of read

 /*

 * This method writes the given value to the javaspace

 */

 synchronized public void write(HashMap value) {

 EntryHash entry = new EntryHash(id, value);

 if (space != null) {

 try {

 space.write(entry, null, latency);

 }

 catch (RemoteException ex) {

 ex.printStackTrace();

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of if statement

 } // end of write

 181

 /*

 * This method returns the newData value

 */

 synchronized public boolean newData() {

 return newData;

 } // end of newData

 /*

 * This method is used to enable notification

 */

 public void setNotification() {

 try {

 EvtListener listener = new EvtListener();

 if (space != null) {

 space.notify(template, null, listener, Long.MAX_VALUE, null);

 } // end of if statement

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of setNotification

 182

 ///

 // private methods

 ///

 /*

 * This method is called by the notify method of EvtListener object

 * When called, it takes every object in the javaspace with predefined id

 */

 private void readFromSpace() {

 try {

 while((tempOne = space.takeIfExists(template, null, JavaSpace.NO_WAIT)) !=
null) {

 tempTwo = tempOne;

 };

 if (tempTwo != null) {

 variable = (EntryHash) tempTwo;

 newData = true;

 } // end of if statement

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of readFromSpace

} // end of NetworkHashSampledBuffer class

 183

B. DATAFLOW NETWORK BUFFERS

1. String Type

/**

 * Title: NetworkStringFIFOBuffer

 * Description: This class implements a FIFO buffer using JavaSpace for string values

 * Company: NPGS

 * @author Tolga DEMIRTAS

 * @version 1.0

 */

import net.jini.core.entry.Entry;

import net.jini.space.JavaSpace;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.event.RemoteEvent;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.RemoteException;

import net.jini.core.lease.Lease;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.entry.UnusableEntryException;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

import java.io.*;

import java.util.Vector;

import tuplespace.entries.*;

 184

public class NetworkStringFIFOBuffer {

 private JavaSpace space;

 private Vector variable;

 private Entry temp;

 private Entry template;

 private String id;

 private long latency;

 private boolean newData;

 /*

 * Listener inner class for notifications

 */

 class EvtListener extends UnicastRemoteObject implements RemoteEventListener {

 public EvtListener() throws RemoteException {

 } // end of EvtListener default constructor

 public void notify(RemoteEvent ev) {

 readFromSpace();

 } // end of notify

 } // end of EvtListener inner class

 185

 /*

 * Constructor

 */

 public NetworkStringFIFOBuffer(String id, JavaSpace space, long latency) {

 this.space = space;

 this.id = id;

 this.variable = new Vector();

 this.latency = latency;

 try {

 this.template = this.space.snapshot(new EntryString(id));

 this.space.write(new EntryString(), null, 6000);

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 this.newData = false;

 } // end of constructor

 //

 // public methods

 //

 /*

 * This method returns the first value in the queue

 */

 synchronized public String read() {

 String d = ((EntryString) variable.elementAt(0)).entryString.toString();

 variable.remove(0);

 if (variable.size() == 0) {

 newData = false;

 } // end of if

 return d;

 } // end of read

 186

 /*

 * This method writes the given value to the javaspace

 */

 synchronized public void write(String value) {

 EntryString entry = new EntryString(id, value);

 if (space != null) {

 try {

 space.write(entry, null, latency);

 }

 catch (RemoteException ex) {

 ex.printStackTrace();

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of if statement

 } // end of write

 /*

 * This method returns the newData value

 */

 synchronized public boolean newData() {

 return newData;

 } // end of newData

 187

 /*

 * This method is used to enable notification

 */

 public void setNotification() {

 try {

 EvtListener listener = new EvtListener();

 if (space != null) {

 space.notify(template, null, listener, Long.MAX_VALUE, null);

 } // end of if statement

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of setNotification

/// private methods ///

 /*

 * This method is called by the notify method of EvtListener object

 * When called, it takes every object in the javaspace with predefined id

 */

 private void readFromSpace() {

 try {

 while((temp = space.takeIfExists(template, null, JavaSpace.NO_WAIT)) != null) {

 variable.add((EntryString) temp);

 newData = true;

 };

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of readFromSpace

} // end of NetworkStringFIFOBuffer class

 188

2. Boolean Type

/**

 * Title: NetworkBooleanFIFOBuffer

 * Description: This class implements a FIFO buffer using JavaSpace for Boolean values

 * Company: NPGS

 * @author Tolga DEMIRTAS

 * @version 1.0

 */

import net.jini.core.entry.Entry;

import net.jini.space.JavaSpace;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.event.RemoteEvent;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.RemoteException;

import net.jini.core.lease.Lease;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.entry.UnusableEntryException;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

import java.io.*;

import java.util.Vector;

import tuplespace.entries.*;

 189

public class NetworkBooleanFIFOBuffer {

 private JavaSpace space;

 private Vector variable;

 private Entry temp;

 private Entry template;

 private String id;

 private long latency;

 private boolean newData;

 /*

 * Listener inner class for notifications

 */

 class EvtListener extends UnicastRemoteObject implements RemoteEventListener {

 public EvtListener() throws RemoteException {

 } // end of EvtListener default constructor

 public void notify(RemoteEvent ev) {

 readFromSpace();

 } // end of notify

 } // end of EvtListener inner class

 190

 /*

 * Constructor

 */

 public NetworkBooleanFIFOBuffer(String id, JavaSpace space, long latency) {

 this.space = space;

 this.id = id;

 this.variable = new Vector();

 this.latency = latency;

 try {

 this.template = this.space.snapshot(new EntryBoolean(id));

 this.space.write(new EntryBoolean(), null, 6000);

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 this.newData = false;

 } // end of constructor

 //

 // public methods

 //

 /*

 * This method returns the first value in the queue

 */

 synchronized public boolean read() {

 boolean d = ((EntryBoolean) variable.elementAt(0)).entryBoolean.booleanValue();

 variable.remove(0);

 if (variable.size() == 0) {

 newData = false;

 } // end of if

 return d;

 } // end of read

 191

 /*

 * This method writes the given value to the javaspace

 */

 synchronized public void write(boolean value) {

 EntryBoolean entry = new EntryBoolean(id, value);

 if (space != null) {

 try {

 space.write(entry, null, latency);

 }

 catch (RemoteException ex) {

 ex.printStackTrace();

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of if statement

 } // end of write

 /*

 * This method returns the newData value

 */

 synchronized public boolean newData() {

 return newData;

 } // end of newData

 192

 /*

 * This method is used to enable notification

 */

 public void setNotification() {

 try {

 EvtListener listener = new EvtListener();

 if (space != null) {

 space.notify(template, null, listener, Long.MAX_VALUE, null);

 } // end of if statement

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of setNotification

 /// private methods//

 /*

 * This method is called by the notify method of EvtListener object

 * When called, it takes every object in the javaspace with predefined id

 */

 private void readFromSpace() {

 try {

 while((temp = space.takeIfExists(template, null, JavaSpace.NO_WAIT)) != null) {

 variable.add((EntryBoolean) temp);

 newData = true;

 };

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of readFromSpace

} // end of NetworkBooleanFIFOBuffer class

 193

3. Integer Type

/**

 * Title: NetworkIntegerFIFOBuffer

 * Description: This class implements a FIFO buffer using JavaSpace for Integer values

 * Company: NPGS

 * @author Tolga DEMIRTAS

 * @version 1.0

 */

import net.jini.core.entry.Entry;

import net.jini.space.JavaSpace;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.event.RemoteEvent;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.RemoteException;

import net.jini.core.lease.Lease;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.entry.UnusableEntryException;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

import java.io.*;

import java.util.Vector;

import tuplespace.entries.*;

 194

public class NetworkIntegerFIFOBuffer {

 private JavaSpace space;

 private Vector variable;

 private Entry temp;

 private Entry template;

 private String id;

 private long la tency;

 private boolean newData;

 /*

 * Listener inner class for notifications

 */

 class EvtListener extends UnicastRemoteObject implements RemoteEventListener {

 public EvtListener() throws RemoteException {

 } // end of EvtListener default constructor

 public void notify(RemoteEvent ev) {

 readFromSpace();

 } // end of notify

 } // end of EvtListener inner class

 195

 /*

 * Constructor

 */

 public NetworkIntegerFIFOBuffer(String id, JavaSpace space, long latency) {

 this.space = space;

 this.id = id;

 this.variable = new Vector();

 this.latency = latency;

 try {

 this.template = this.space.snapshot(new EntryInteger(id));

 this.space.write(new EntryInteger(), null, 6000);

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 this.newData = false;

 } // end of constructor

 //

 // public methods

 //

 /*

 * This method returns the first value in the queue

 */

 synchronized public int read() {

 int d = ((EntryInteger) variable.elementAt(0)).entryInteger.intValue();

 variable.remove(0);

 if (variable.size() == 0) {

 newData = false;

 } // end of if

 return d;

 } // end of read

 196

 /*

 * This method writes the given value to the javaspace

 */

 synchronized public void write(int value) {

 EntryInteger entry = new EntryInteger(id, value);

 if (space != null) {

 try {

 space.write(entry, null, latency);

 }

 catch (RemoteException ex) {

 ex.printStackTrace();

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of if statement

 } // end of write

 /*

 * This method returns the newData value

 */

 synchronized public boolean newData() {

 return newData;

 } // end of newData

 197

 /*

 * This method is used to enable notification

 */

 public void setNotification() {

 try {

 EvtListener listener = new EvtListener();

 if (space != null) {

 space.notify(template, null, listener, Long.MAX_VALUE, null);

 } // end of if statement

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of setNotification

 //private methods///

 /*

 * This method is called by the notify method of EvtListener object

 * When called, it takes every object in the javaspace with predefined id

 */

 private void readFromSpace() {

 try {

 while((temp = space.takeIfExists(template, null, JavaSpace.NO_WAIT)) != null) {

 variable.add((EntryInteger) temp);

 newData = true;

 };

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of readFromSpace

} // end of NetworkIntegerFIFOBuffer class

 198

4. Double Type

/**

 * Title: NetworkDoubleFIFOBuffer

 * Description: This class implements a FIFO buffer using JavaSpace for double values

 * Company: NPGS

 * @author Tolga DEMIRTAS

 * @version 1.0

 */

import net.jini.core.entry.Entry;

import net.jini.space.JavaSpace;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.event.RemoteEvent;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.RemoteException;

import net.jini.core.lease.Lease;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.entry.UnusableEntryException;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

import java.io.*;

import java.util.Vector;

import tuplespace.entries.*;

 199

public class NetworkDoubleFIFOBuffer {

 private JavaSpace space;

 private Vector variable;

 private Entry temp;

 private Entry template;

 private String id;

 private long latency;

 private boolean newData;

 /*

 * Listener inner class for notifications

 */

 class EvtListener extends UnicastRemoteObject implements RemoteEventListener {

 public EvtListener() throws RemoteException {

 } // end of EvtListener default constructor

 public void notify(RemoteEvent ev) {

 readFromSpace();

 } // end of notify

 } // end of EvtListener inner class

 200

 /*

 * Constructor

 */

 public NetworkDoubleFIFOBuffer(String id, JavaSpace space, long latency) {

 this.space = space;

 this.id = id;

 this.variable = new Vector();

 this.latency = latency;

 try {

 this.template = this.space.snapshot(new EntryDouble(id));

 this.space.write(new EntryDouble(), null, 6000);

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 this.newData = false;

 } // end of constructor

 //

 // public methods

 //

 /*

 * This method returns the first value in the queue

 */

 synchronized public double read() {

 double d = ((EntryDouble) variable.elementAt(0)).entryDouble.doubleValue();

 variable.remove(0);

 if (variable.size() == 0) {

 newData = false;

 } // end of if

 return d;

 } // end of read

 201

 /*

 * This method writes the given value to the javaspace

 */

 synchronized public void write(double value) {

 EntryDouble ent ry = new EntryDouble(id, value);

 if (space != null) {

 try {

 space.write(entry, null, latency);

 }

 catch (RemoteException ex) {

 ex.printStackTrace();

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of if statement

 } // end of write

 /*

 * This method returns the newData value

 */

 synchronized public boolean newData() {

 return newData;

 } // end of newData

 202

 /*

 * This method is used to enable notification

 */

 public void setNotification() {

 try {

 EvtListener listener = new EvtListener();

 if (space != null) {

 space.notify(template, null, listener, Long.MAX_VALUE, null);

 } // end of if statement

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of setNotification

// private methods//

 /*

 * This method is called by the notify method of EvtListener object

 * When called, it takes every object in the javaspace with predefined id

 */

 private void readFromSpace() {

 try {

 while((temp = space.takeIfExists(template, null, JavaSpace.NO_WAIT)) != null) {

 variable.add((EntryDouble) temp);

 newData = true;

 };

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of readFromSpace

} // end of NetworkDoubleFIFOBuffer class

 203

5. Long Type

/**

 * Title: NetworkLongFIFOBuffer

 * Description: This class implements a FIFO buffer using JavaSpace for Long values

 * Company: NPGS

 * @author Tolga DEMIRTAS

 * @version 1.0

 */

import net.jini.core.entry.Entry;

import net.jini.space.JavaSpace;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.event.RemoteEvent;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.RemoteException;

import net.jini.core.lease.Lease;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.entry.UnusableEntryException;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

import java.io.*;

import java.util.Vector;

import tuplespace.entries.*;

 204

public class NetworkLongFIFOBuffer {

 private JavaSpace space;

 private Vector variable;

 private Entry temp;

 private Entry template;

 private String id;

 private long latency;

 private boolean newData;

 /*

 * Listener inner class for notifications

 */

 class EvtListener extends UnicastRemoteObject implements RemoteEventListener {

 public EvtListener() throws RemoteException {

 } // end of EvtListener default constructor

 public void notify(RemoteEvent ev) {

 readFromSpace();

 } // end of notify

 } // end of EvtListener inner class

 205

 /*

 * Constructor

 */

 public NetworkLongFIFOBuffer(String id, JavaSpace space, long latency) {

 this.space = space;

 this.id = id;

 this.variable = new Vector();

 this.latency = latency;

 try {

 this.template = this.space.snapshot(new EntryLong(id));

 this.space.write(new EntryLong(), null, 6000);

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 this.newData = false;

 } // end of constructor

 //

 // public methods

 //

 /*

 * This method returns the first value in the queue

 */

 synchronized public long read() {

 long d = ((EntryLong) variable.elementAt(0)).entryLong.longValue();

 variable.remove(0);

 if (variable.size() == 0) {

 newData = false;

 } // end of if

 return d;

 } // end of read

 206

 /*

 * This method writes the given value to the javaspace

 */

 synchronized public void write(long value) {

 EntryLong entry = new EntryLong(id, value);

 if (space != null) {

 try {

 space.write(entry, null, latency);

 }

 catch (RemoteException ex) {

 ex.printStackTrace();

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of if statement

 } // end of write

 /*

 * This method returns the newData value

 */

 synchronized public boolean newData() {

 return newData;

 } // end of newData

 207

 /*

 * This method is used to enable notification

 */

 public void setNotification() {

 try {

 EvtListener listener = new EvtListener();

 if (space != null) {

 space.notify(template, null, listener, Long.MAX_VALUE, null);

 } // end of if statement

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of setNotification

 // private methods//

 /*

 * This method is called by the notify method of EvtListener object

 * When called, it takes every object in the javaspace with predefined id

 */

 private void readFromSpace() {

 try {

 while((temp = space.takeIfExists(template, null, JavaSpace.NO_WAIT)) != null) {

 variable.add((EntryLong) temp);

 newData = true;

 };

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of readFromSpace

} // end of NetworkLongFIFOBuffer class

 208

6. Float Type

/**

 * Title: NetworkFloatFIFOBuffer

 * Description: This class implements a FIFO buffer using JavaSpace for float values

 * Company: NPGS

 * @author Tolga DEMIRTAS

 * @version 1.0

 */

import net.jini.core.entry.Entry;

import net.jini.space.JavaSpace;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.event.RemoteEvent;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.RemoteException;

import net.jini.core.lease.Lease;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.entry.UnusableEntryException;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

import java.io.*;

import java.util.Vector;

import tuplespace.entries.*;

 209

public class NetworkFloatFIFOBuffer {

 private JavaSpace space;

 private Vector variable;

 private Entry temp;

 private Entry template;

 private String id;

 private long latency;

 private boolean newData;

 /*

 * Listener inner class for notifications

 */

 class EvtListener extends UnicastRemoteObject implements RemoteEventListener {

 public EvtListener() throws RemoteException {

 } // end of EvtListener default construc tor

 public void notify(RemoteEvent ev) {

 readFromSpace();

 } // end of notify

 } // end of EvtListener inner class

 210

 /*

 * Constructor

 */

 public NetworkFloatFIFOBuffer(String id, JavaSpace space, long latency) {

 this.space = space;

 this.id = id;

 this.variable = new Vector();

 this.latency = latency;

 try {

 this.template = this.space.snapshot(new EntryFloat(id));

 this.space.write(new EntryFloat(), null, 6000);

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 this.newData = false;

 } // end of constructor

 //

 // public methods

 //

 /*

 * This method returns the first value in the queue

 */

 synchronized public double read() {

 float d = ((EntryFloat) variable.elementAt(0)).entryFloat.floatValue();

 variable.remove(0);

 if (variable.size() == 0) {

 newData = false;

 } // end of if

 return d;

 } // end of read

 211

 /*

 * This method writes the given value to the javaspace

 */

 synchronized public void write(float value) {

 EntryFloat entry = new EntryFloat(id, value);

 if (space != null) {

 try {

 space.write(entry, null, latency);

 }

 catch (RemoteException ex) {

 ex.printStackTrace();

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of if statement

 } // end of write

 /*

 * This method returns the newData value

 */

 synchronized public boolean newData() {

 return newData;

 } // end of newData

 212

 /*

 * This method is used to enable notification

 */

 public void setNotification() {

 try {

 EvtListener listener = new EvtListener();

 if (space != null) {

 space.notify(template, null, listener, Long.MAX_VALUE, null);

 } // end of if statement

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of setNotification

 /// private methods///

 /*

 * This method is called by the notify method of EvtListener object

 * When called, it takes every object in the javaspace with predefined id

 */

 private void readFromSpace() {

 try {

 while((temp = space.takeIfExists(templa te, null, JavaSpace.NO_WAIT)) != null) {

 variable.add((EntryFloat) temp);

 newData = true;

 };

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of readFromSpace

} // end of NetworkFloatFIFOBuffer class

 213

7. HashMap Type

/**

 * Title: NetworkHashFIFOBuffer

 * Description: This class implements a FIFO buffer using JavaSpace for Hash values

 * Company: NPGS

 * @author Tolga DEMIRTAS

 * @version 1.0

 */

import net.jini.core.entry.Entry;

import net.jini.space.JavaSpace;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.event.RemoteEvent;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.RemoteException;

import net.jini.core.lease.Lease;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.entry.UnusableEntryException;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

import java.io.*;

import java.util.Vector;

import java.util.HashMap;

import tuplespace.entries.*;

 214

public class NetworkHashFIFOBuffer {

 private JavaSpace space;

 private Vector variable;

 private Entry temp;

 private Entry template;

 private String id;

 private long latency;

 private int lastRead;

 private boolean newData;

 /*

 * Listener inner class for notifications

 */

 class EvtListener extends UnicastRemoteObject implements RemoteEventListener {

 public EvtListener() throws RemoteException {

 } // end of EvtListener default constructor

 public void notify(RemoteEvent ev) {

 readFromSpace();

 } // end of notify

 } // end of EvtListener inner class

 215

 /*

 * Constructor

 */

 public NetworkHashFIFOBuffer(String id, JavaSpace space, long latency) {

 this.space = space;

 this.id = id;

 this.variable = new Vector();

 this.latency = latency;

 try {

 this.template = this.space.snapshot(new EntryHash(id));

 this.space.write(new EntryHash(), null, 6000);

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 this.newData = false;

 } // end of constructor

 //

 // public methods

 //

 /*

 * This method returns the first value in the queue

 */

 synchronized public HashMap read() {

 HashMap d = ((EntryHash) variable.elementAt(0)).getHashMap();

 variable.remove(0);

 if (variable.size() == 0) {

 newData = false;

 } // end of if

 return d;

 } // end of read

 216

 /*

 * This method writes the given value to the javaspace

 */

 synchronized public void write(HashMap value) {

 EntryHash entry = new EntryHash(id, value);

 if (space != null) {

 try {

 space.write(entry, null, latency);

 }

 catch (RemoteException ex) {

 ex.printStackTrace();

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of if statement

 } // end of write

 /*

 * This method returns the newData value

 */

 synchronized public boolean newData() {

 return newData;

 } // end of newData

 217

 /*

 * This method is used to enable notification

 */

 public void setNotification() {

 try {

 EvtListener listener = new EvtListener();

 if (space != null) {

 space.notify(template, null, listener, Long.MAX_VALUE, null);

 } // end of if statement

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of setNotification

/// private methods///

 /*

 * This method is called by the notify method of EvtListener object

 * When called, it takes every object in the javaspace with predefined id

 */

 private void readFromSpace() {

 try {

 while((temp = space.takeIfExists(template, null, JavaSpace.NO_WAIT)) != null) {

 variable.add((EntryHash) temp);

 newData = true;

 };

 }

 catch (Exception ex) {

 ex.printStackTrace();

 } // end of try-catch statement

 } // end of readFromSpace

} // end of NetworkHashFIFOBuffer class

 218

THIS PAGE INTENTIONALLY LEFT BLANK

 219

LIST OF REFERENCES

[BAN84] A. D. Bierrel, and B. J. Nelson, “Implementing Remote Procedure Calls,”

ACM Trans. Computer Systems 2, 1984, pp. 39 – 59.

[CAA98] J. C. A. de Almeida, “Software Architecture for Distributed Real-Time

Embedded Systems,” Master’s Thesis, Naval Postgraduate School,

Monterey, California, 1998.

[CAD97] David F. Carr, “CORBA and DCOM: How Each Works,”

http://internetworld.com/print/1997/03/4/software/cobra.html.

[CAK01] Lap-Sun Cheung, and Yu-Kwong Kwok, “A Quantitative Comparison of

Load Balancing Approaches in Distributed Object Computing Systems,”

IEEE 25th Annual International Compsac, 2001, pp. 257 – 262.

[CDK96] G. Coulouris, J. Dollimore, and T. Kindberg, “Distributed Systems:

Concepts and Design,” Addison-Wesley, 1996.

[CLO00] Cloudscape, and Cloudscape Java Database, http://www.cloudscape.com.

[DCO97] Frank E. Redmond, “DCOM: Microsoft Distributed Component Object

Model,” IDG Books, 1997.

[DOU01] B. P. Douglass, “Doing Hard Time,” Addison-Wesley, 2001.

[EDW01] W. Keith Edwards, “Core JINI,” Second Edition, The Sun Microsystems

Press, 2001.

[FHA99] E. Freeman, S. Hupfer and K. Arnold, “JavaSpaces: Principles, Patterns,

and Practice,” Addison-Wesley, 1999.

[GEL85] D. Gelernter, “Generative Communication in Linda,” ACM Trans.

Programming Languages and Systems, 7(1), Jan. 1985, pp. 80 – 112.

[KIN99] B. K. Kin, “A Simple Software Agents Framework for Building

Distributed Applications,” Master’s Thesis, Naval Postgraduate School,

Monterey, California, 1999.

 220

[LAP93] A. P. Laplante, “Real-Time Systems Design and Analysis: An Engineer’s

Handbook,” IEEE Press, 1993.

[LAS96] Luqi, and M. Shing, “Real-Time Scheduling for Software Prototyping,”

Journal of Systems Integration 6, 1996, pp. 41 – 72.

[LBM00] Luqi, V. Berzins, M. Shing, N. Nada, and C. Eagle, “Computer Aided

Prototyping System (CAPS) for Heterogeneous Systems Development and

Integration,” Proceedings of the 2000 Command and Control Research

and Technology Symposium, Naval Postgraduate School, Monterey, CA,

June 26 – 28, 2000.

[LBS01] Luqi, V. Berzins, J. Ge, M. Shing, M. Auguston, B. Bryant, and B. Kin,

“DCAPS – Architecture for Distributed Computer Aided Prototyping

System,” IEEE Computer Society Press, 2001, pp. 103 – 108.

[LBS00] Luqi, V. Berzins, M. Shing, R. Riehle, and J. Nogueira, “Evolutionary

Computer Aided Prototyping System,” IEEE Proceedings 34th

International Conference on Technology of Object-Oriented Languages

and Systems, 2000, pp. 363 – 372.

[LBY88] Luqi, V. Berzins, and R. T. Yeh, “A Prototyping Language for Real-Time

Software,” IEEE Transactions on Software Engineering 14(10), Oct. 1988,

pp. 1409 – 1423.

[LUQ93] Luqi, “Real-Time Constraints in a Rapid Prototyping Language,” Comput.

Lang. 18(2), 1993, pp. 77 – 103.

[LUQ92] Luqi, “Computer Aided Prototyping for a Command-and-Control System

using CAPS,” IEEE Software, 9(1), Jan. 1992, pp. 56 – 67.

[NAK00] P. Niemeyer, and J. Knudsen, “Learning Java,” O’Reilly, May 2000.

[ORB95] CORBA Overview, and The OMA Reference Model, OMG,

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/arch2.html, 1995.

 221

[ORB91] The Object Management Group, “Common Object Request Broker:

Architecture and Specification,” OMG Document Number 91.12.1, 1991.

[RMI00] Sun Microsystems, Remote Method Invocation, Java 2 SDK

Documentation, http://www.java.sun.com/products/j2se/1.3/docs/guide/rmi/.

[RWJ01] William J. Ray, “Object Model Driven Code Generation for the

Enterprise,” IEEE Computer Society Press, 2001, pp. 84 – 89.

[SAW01] M. Stang, and S. Whinston, “Enterprise Computing with Jini

Technology,” IT Professional 3(1), Jan-Feb 2001, pp. 33 – 38.

[SIN97] K. P. Sinha, “Distributed Operating Systems,” IEEE Press, 1997.

[TAN95] A. S. Tanenbaum, “Distributed Operating Systems,” Prentice-Hall, 1995

[TSP00] IBM, Tspaces, http://www.almaden.ibm.com/cs/Tspaces

 222

THIS PAGE INTENTIONALLY LEFT BLANK

 223

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Deniz Kuvvetleri Komutanligi
Personel Daire Baskanligi
Bakanliklar
Ankara, TURKEY

4. Deniz Harp Okulu Komutanligi
Kutuphanesi
Tuzla
Istanbul, TURKEY

5. Chairman, Code CS
Naval Postgraduate School

 Monterey, California 93943-5118

6. Dr Man-Tak Shing, CS/SH
Naval Postgraduate School
Monterey, California 93943-5118

7. LTC Joseph Puett
Naval Postgraduate School
Monterey, California 93943-5118

8. LTJG Tolga Demirtas
Deniz Harp Okulu Komutanligi

 Tuzla
Istanbul, TURKEY

